Rechenoperationen mit Vektoren

Description

Mind Map on Rechenoperationen mit Vektoren, created by Maximilian Schönherr on 07/12/2016.
Maximilian Schönherr
Mind Map by Maximilian Schönherr, updated more than 1 year ago
Maximilian Schönherr
Created by Maximilian Schönherr about 8 years ago
37
0

Resource summary

Rechenoperationen mit Vektoren
  1. Vektoren addieren subtrahieren : Oberer Term +/- oberer Term :unterer Term +/- unterer Term
    1. Wie Multipliziert man ein skalar Produkt mit einem Vektor ? Oberer Term mal Skalar Produkt + unterer Term mal Skalar Produkt.
      1. Zwei Vektoren u und v heißen orthogonal zu einander, wenn ihr Skalarprodukt u · v = 0 bzw. uT · v = 0 Null ist.
        1. In der Geometrie ist ein Normalenvektor, auch Normalvektor, ein Vektor, der orthogonal (d. h. rechtwinklig, senkrecht) auf einer Geraden, Kurve, Ebene, (gekrümmten) Fläche oder einer höherdimensionalen Verallgemeinerung eines solchen Objekts steht.
          1. Den Normalenvektor kann man auf verschiedenen Wegen berechnen, entweder über ein Gleichungssystem oder über das Kreuzprodukt, das auch Vektorprodukt genannt wird.
      2. Wie bestimmt man einen Gegenvektor ? Den Kehrwert Eines Vektoren bilden und ein Vorzeichen des neuen Vektors verändern.Er ist das Gegenteil des ursprünglichen Vektors.
        1. Ein Einheitsvektor ist in der analytischen Geometrie ein Vektor der Länge Eins.ein Vektor mit der Länge 5 sich aus 5 Einheitsvektoren zusammen setzen lässt. Ein Vektor mit der Länge 6 lässt sich aus 6 Einheitsvektoren zusammen setzen, usw.Einen normierten Vektor kannst du leicht durch skalare Multiplikation auf eine gewünschte Länge bringen. Er hat ja die Länge 1.
          1. Das Skalarprodukt zweier Vektoren ist die Multiplikation der Projektion des Vektors auf den Vektor mit dem Betrag von
            1. Wie berechne ich den mittelpunkt einer Strecke ?:m= 0.5 (a+b)
              1. Schwerpunkt einer strecke: Vektor s=1/3 (verktor a + vektor b + vektor c)
                1. Das Multiplizieren eines Vektor mit einer Zahl t nennt man Skalarmultiplikation.
                  1. Ein Skalar ist eine mathematische Größe, die allein durch die Angabe eines Zahlenwertes charakterisiert ist
                    1. Das Skalarprodukt ist eine Verknüpfung von zwei Vektoren die eine Zahl ergibt.
                    2. Winkel zweier Vektoren berechen : cos y=(vektor a * vektor b )/ (|vektor a| * |vektor b|)
                      Show full summary Hide full summary

                      Similar

                      'The Merchant of Venice' - William Shakespeare
                      cian.buckley
                      Essay Writing: My Essay Plan
                      Andrea Leyden
                      History of Medicine: Ancient Ideas
                      James McConnell
                      Key Shakespeare Facts
                      Andrea Leyden
                      The Norman Conquest 1066-1087
                      adam.melling
                      AS Biology- OCR- Module 1 Cells Specification Analysis and Notes
                      Laura Perry
                      Forms of Business Ownership Quiz
                      Noah Swanson
                      Cells and the Immune System
                      Eleanor H
                      PSBD TEST 1
                      Mwebaze Green
                      GoConqr Guide to Flowcharts for Business
                      Sarah Egan
                      General Pathoanatomy Final MCQs (1-110)- 3rd Year- PMU
                      Med Student