Created by Tom Schobert
over 7 years ago
|
||
Question | Answer |
Komplexe Schreibweise | E ̃(r ⃗,t)=E ̃_0 (r ⃗,t) exp〖[i(ωt-k ⃗r ⃗ )]〗 Amplitude E0: Größe Schwingungsauschlag im räumlich/zeitlich Entwicklung Anfangsphase (evtl. selbst zeitabhängig) komplexer Schwingungsterm schnell Oszillation → momentanes E-Feld, momentane Phase auch Variation quer zur Ausbreitungsrichtung Komplexe Brechzahl n ̅=1-δ-iβ δ: Brechzahldekrement; β: Extinktionskoeffizient E ̃(r ⃗,t)=E ̃(0) exp[-2π x/λ β] exp〖[i(ωt-2π x/λ (1-δ)]〗 erster Term: Absorption zweiter Term: Brechung |
Absorption | I(x)=I_0 exp(-μx); μ=4π/λ β (Lambert-Beersches Absorptionsgesetz, makroskopisches Absorptionskoeffizient) manchmal verschiedene Abschwächmechanismen, meist 1 dominanter Prozess |
Brechung | Wirkung Medium auf Phasen harte Strahlung δ>0→n<1 Phasengeschwindigkeit im Röntgen höher als Vakuum-Lichtgeschwindigkeit → Gruppengeschwindigkeit v_g<c_0 atomare/ionische Übergangslinien Lorentzmodell für freie und quasifreie Elektronen |
1. atomare/ionische Übergangslinien | - Herleitung aus atomaren Strukturen - Brechzahl nimmt auf weicher Seite zur Übergangslinie hin zu , auf harter ab o normale Dispersion o innerhalb anormale Dispersion |
2. Lorentzmodell für freie und quasifreie Elektronen | großer Spektralbereich ohne Linien → Brechzahl von freien Elektronen bestimmt → Plasmafrequenz → Elektronendichte (Brechzahlbeitrag stets <1) |
harter Spektralbereich | Brechzahldekrement, weit entfernt von Absorptionskanten und Übergangslinien: δ≈(n_a Zν_(e,0))/2π⋅λ² bei 2-50 keV typische Werte: δ=〖10〗^(-5)-〖10〗^(-7) niedrig Z δ deutlich größer als β (3 Größenordnungen) Phase stärker beeinflussbar als Amplitude |
Kramers-Kronig-Relation | Zusammenhang zwischen δ und β δ(ω)=2/π ∫_0^(∞ )▒〖(ω^' β(ω^' ))/((ω^' )^2-ω²) dω'〗 β(ω)=-2ω/π ∫_0^(∞ )▒〖δ(ω^' )/((ω^' )^2-ω²) dω'〗 eine der beiden Größen berechenbar, wenn andere über gesamten Spektralbereich bekannt δ aus Daten für β , Brechzahl für harte Strahlung schwer zu messen |
Want to create your own Flashcards for free with GoConqr? Learn more.