Basic Anti-Derivatives

Description

Basic indefinite integrals
Bill Andersen
Flashcards by Bill Andersen, updated more than 1 year ago
Bill Andersen
Created by Bill Andersen over 8 years ago
164
0

Resource summary

Question Answer
\[ \int k \, \textrm{d}x =\] \[kx +C\]
\[ \int \, \textrm{d}x =\] \[x +C\]
\[ \int 0 \, \textrm{d}x =\] \[C\]
\[ \int k \, f(x) \, \textrm{d} x =\] \[ k \int f(x) \, \textrm{d} x\]
\[ \int \big ( f(x) \pm g(x) \big ) \, \textrm{d} x =\] \[ \int f(x) \, \textrm{d} x \pm \int g(x) \, \textrm{d} x \]
\[ \int x^n \, \textrm{d} x = \] \[ \frac {1}{n+1} \, x^{n+1} + C \]
\[ \int \sin(x) \, \textrm{d}x =\] \[-\cos(x) + C \]
\[ \int \cos(x) \, \textrm{d}x =\] \[\sin(x) + C \]
\[ \int \sec^2(x) \, \textrm{d}x =\] \[\tan(x) + C \]
\[ \int \csc^2(x) \, \textrm{d}x =\] \[-\cot(x) + C \]
\[ \int \sec(x)\tan(x) \, \textrm{d}x =\] \[\sec(x) + C \]
\[ \int \csc(x)\cot(x) \, \textrm{d}x =\] \[-\csc(x) + C \]
\[ \sum_{i=1}^n c = \] \[ n \cdot c \]
\[ \sum_{i=1}^n i = \] \[ \frac{n(n+1)}{2} \]
\[ \sum_{i=1}^n i^2 = \] \[ \frac{n(n+1)(2n+1)}{6} \]
\[\int \frac{1}{1+x^2}\,dx=\tan^{-1}x+C\] \[\tan^{-1}x+C\]
Show full summary Hide full summary

Similar

Pythagorean Theorem Quiz
Selam H
Geometry Vocabulary
patticlj
Algebra 2 Quality Core
Niat Habtemariam
Limits AP Calculus
lakelife62
GRE Study Precalc
Marissa Miller
Misc. Math
GiGi Mae
Geometry Formulas
Selam H
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary
Statistics Equations & Graphs
Andrea Leyden
Using GoConqr to teach Maths
Sarah Egan