Functions

Description

Year 13 Mathematics Flashcards on Functions, created by Dominique TREMULOT on 24/08/2023.
Dominique TREMULOT
Flashcards by Dominique TREMULOT, updated more than 1 year ago
Dominique TREMULOT
Created by Dominique TREMULOT over 1 year ago
13
0

Resource summary

Question Answer
A linear /ˈlɪniə(r)/ function Une fonction affine
The function ln The logarithm /ˈlɒɡərɪðəm/ function/the natural logarithm
A one-to-one function Une bijection
The edges of the domain (of a function) Les bornes de l'ensemble de définition d'une fonction
What is the input value for which \(f(x)=0\)? Quels sont les antécédents de 0 par \(f\) ?
Remplacer \(x\) par 0 Plug in 0 for \(x\) = Plug in \(x=0\)
The range of a function The complete set of all possible resulting values of the dependent variable (\(y\)- usually)- after we have substituted the domain.
The graph of \(f\) passes through \((1-0)\) Le graphique de \(f\) passe par le point de coordonnées \((1\pv 0)\)
The slope The ratio of the vertical change between two points- the rise- to the horizontal change between the same two points- the run
The slope of a line passing through the points \((x_1- y_1)\) and \((x_2- y_2)\) is \(m=\dfrac{y_2-y_1}{x_2-x_1}\)
A line with a positive slope \((m > 0)\) A line which rises from left to right
A line with a negative slope \((m < 0)\) A line which falls from left to right
The slope intercept form of a linear function \(y=mx+b\) - \(m=\text{slope}\) - \(b=y−\text{intercept}\)
The point-slope form of the equation of a straight line \(y−y_1 = m(x − x_1)\)
The slope-intercept form of the equation of a straight line \(y=mx+p\)
The inverse function of \(f\) La fonction réciproque de \(f\)
\(\displaystyle\lim_{x\to\infty} f(x)\) Limit of \(f(x)\) as \(x\) approaches infinity
To sketch the graph of \(f\) Donner une allure de la représentation graphique de \(f\)
To graph the function \(f\) Tracer précisément la représentation graphique de \(f\)
The function \(f\) is differentiable /dɪfə'renʃieɪbl/ on \(\mathbb{R}\) La fonction \(f\) est dérivable sur \(\mathbb{R}\).
To differentiate /dɪfəˈrenʃieɪt/ the function \(f\) Dériver le fonction \(f\)
\(f'\) est la dérivée de la fonction \(f\) \(f'\) is the (first) derivative /dɪˈrɪvətɪv/ of the function \(f\)
\(y'=\dfrac{\text{d} y}{\text{d} x}\) is the derivative /dɪˈrɪvətɪv/ of \(y\) with respect to \(x\) La dérivée de \(y\) par rapport à \(x\)
\(f'(2)\) est la dérivée de \(f\) en 2 \(f'(2)\) is the derivative of \(f\) at 2/the derivative of \(f\) at \(x=2\)/the derivative of \(f\) at the point 2
\(f''\) est la dérivée seconde de \(f\) \(f''\) is the second derivative /dɪˈrɪvətɪv/ of the function \(f\)
\(f'(x)\) \(f\) dash \(x\) or the (first) derivative of \(f\) with respect to \(x\) or \(f\) prime of \(x\)
\(f''(x)\) \(f\) double-dash \(x\) or the second derivative of \(f\) with respect to \(x\) or \(f\) double prime of \(x\)
If \(y=f(x)\)- \(y\) is called The image of \(x\) under \(f\)
If \(y=f(x)\)- \(y\) is called- \(x\) is called A preimage /pri:ɪmɪdʒ/ of \(y\) under \(f\)
When talking about limits- \(0\cdot \infty\) is called An indeterminate /ɪndɪˈtɜːmɪnət/ form
Sketch the graph of the function \(f\) Dessine le graphique de la fonction \(f\).
A piecewise function (or a piecewise-defined function) Une fonction définie par morceaux
A constant piecewise function Une fonction constante par morceaux
To graph a function Tracer la représentation graphique d'une fonction
The function that assigns to each nonnegative integer its last digit Une fonction qui associe à chaque entier naturel son dernier chiffre
The function is concave /kɒnˈkeɪv/ up/the function is convex La fonction est convexe
The function is concave /kɒnˈkeɪv/ down La fonction est concave
The difference quotient of \(f\) is the average rate of change of \(f(x)\) over the interval \([x-x+h]\) Le taux d'accroissement de \(f\) entre \(x\) et \(x+h\)
A limit exists if and only if Its left-hand and right-hand limits exist and agree
An invertible /ɪnˈvɜːtəbəl/ function Une fonction bijective
If \(f\) is an invertible /ɪnˈvɜːtəbəl/ function Its graph passes the horizontal line test
The graph of \(y=x^{1/n}\) is obtained By reflecting the graph of \(y=x^n\) across the line \(y=x\)
\(\csc(x)\) \(\dfrac{1}{\sin(x)}\)
\(\sec(x)\) \(\dfrac{1}{\cos(x)}\)
\(\cot(x)\) \(\dfrac{1}{\tan(x)}\)
If \(f(x)\) is continuous at \(x=a\) Then the graph of \(f(x)\) can be drawn by hand around \(x=a\) without having to lift the pencil from the paper.
The greatest integer function is denoted by \(\lfloor x\rfloor\) La fonction partie entière
A bounded function Une fonction bornée
An anti-derivative of the function \(f\) Une primitive de la fonction \(f\)
Show full summary Hide full summary

Similar

English Language Techniques
lewis001
Bayonet Charge flashcards
katiehumphrey
Macbeth Quotes To Learn
Sophie Brokenshire
Romeo & Juliet Quotes
Lucy Hodgson
English Literature Key Terms
charlotteoom
Using GoConqr to teach English literature
Sarah Egan
Using GoConqr to study English literature
Sarah Egan
New English Literature GCSE
Sarah Egan
A Level: English language and literature techniques = Structure
Jessica 'JessieB
A Level: English language and literature technique = Dramatic terms
Jessica 'JessieB
The Strange Case of Dr. Jekyll and Mr. Hyde
K d