TEMAS DE FISICA Public

TEMAS DE FISICA

Berenice Castro
Course by Berenice Castro, updated more than 1 year ago Contributors

Description

La finalidad es aprender a dominar temas de física de nivel bachillerato.

Module Information

No tags specified
La física es la ciencia que estudia la Naturaleza en su sentido más amplio. La física es la ciencia básica que estudia el cosmos, es decir, el todo desde el punto de vista científico. Aunque, aparentemente, la física consiste en buscar o encontrar una matematización de la realidad observable, no es así. Lo que ocurre es que la matemática es el idioma en que se puede expresar con mayor precisión lo que se dice en física. Desde un punto de vista aplicado, el campo de la física es mucho más amplio, ya que se utiliza, por ejemplo, en la explicación de la aparición de propiedades emergentes, más típicos de otras ciencias como Sociología y Biología. Esto hace que la física y sus métodos se pueda aplicar y utilizar en otros campos de la ciencia y se utilicen para cualquier tipo de investigación científica. La física es una de las Ciencias Naturales que más ha contribuido al desarrollo y bienestar del hombre porque gracias a su estudio e investigación ha sido posible encontrar explicación a los diferentes fenómenos de la naturaleza, que se presentan cotidianamente en nuestra vida diaria. Como por ejemplo, algo tan común para algunas personas como puede ser la lluvia, entre muchos otros.
Show less
No tags specified
Movimiento Ondulatorio   Proceso por el que se propaga energía de un lugar a otro sin transferencia de materia, mediante ondas mecánicas o electromagnéticas. En cualquier punto de la trayectoria de propagación se produce un desplazamiento periódico, u oscilación, alrededor de una posición de equilibrio. Puede ser una oscilación de moléculas de aire, como en el caso del sonido que viaja por la atmósfera, de moléculas de agua (como en las olas que se forman en la superficie del mar) o de porciones de una cuerda o un resorte. En todos estos casos, las partículas oscilan en torno a su posición de equilibrio y sólo la energía avanza de forma continua. Estas ondas se denominan mecánicas porque la energía se transmite a través de un medio material, sin ningún movimiento global del propio medio. Las únicas ondas que no requieren un medio material para su propagación son las ondas electromagnéticas; en ese caso las oscilaciones corresponden a variaciones en la intensidad de campos magnéticos y eléctricos.
Show less
No tags specified
se comprueba que las ondas sonoras se reflejan en el mismo ángulo con el que inciden, pero se atenúa si la superficie es blanda o rugosa. Se puede entender el mecanismo de la reflexión si se considera que las distintas presiones sonoras trasportadas por la onda que inciden contra un material hacen que este vibre. Parte de la energía vibratoria se devuelve al medio material mediante la reflexión y la otra parte absorbida, a su vez, se trasforma en otros dos tipos de energía: la que disipa en el medio y la que se transmite por el material.   Refracción del sonido en un mismo medio.   La refracción es otra de las características de los movimientos ondulatorios. Consiste en el cambio de dirección y de rapidez que sufre una onda cuando pasa de un medio a otro de distinta características. Pero la refracción también puede producirse dentro de un mismo medio cuando las características de este no son perfectamente homogéneas, sino que varían en cuanto a su densidad o su temperatura y, por consiguiente, la rapidez de propagación del sonido en el aire sufre refracciones, dada que la temperatura del aire no es uniforme. En un día soleado, las capas de aire próximas a la superficie terrestre están a mayor temperatura que las capas más altas, y por lo tanto, la rapidez del sonido aumenta con la temperatura porque las moléculas oscilan más rápidamente y transmiten al entorno la perturbación, por ello  en las capas bajas la rapidez es mayor que en las altas. Caso contrario sucede en las noche, donde el aire próximo a la tierra se enfría más rapidamente que el de las capas inmediatamente superiores. De este modo, el sonido emitido desde el suelo se curva hacia abajo en las capas frías más altas. Por ello en la noche podemos escuchar con un mayor alcance.   Absorción y aislamiento acústico   La absorción del sonido es uno de los problemas fundamentales con que se enfrentan un ingeniero cuando desea aislar del ruido, un edificio o una zona determinada. Afortunademente, los distintos materiales tienen la capacidad de absorber energía acústica según su porosidad. Basándose en esta propiedad, se decide qué materiales son más adecuados pra revestir las paredes interiores de la una sala, por ejemplo. Cuanto más poroso se un material, más absorbente será y, por lo tanto, reflejará menos sonido. Si una habitación tiene las paredes lisas, cuando hay varias personas hablando dentro de ella habrá más ruido que si revestimos las mismas paredes con gruesas cortinas de tela. Para conseguir un buen aislamiento acústico, es necesario impedir que el sonido se trasmita, para ello es necesario materiales duros, pesados y poco elásticos. Algunos ejemplos osn hormigón, acero, plomo, etc.   Reverberación Es la prologación del sonido una vez que se ha extinguido la fuente sonora. Se produce por las múltiples ondas reflejadas que continúan llegando al oído. Si las paredes fueran reflectores perfectos, el proceso sería de duración infinita, afortunademente, en las paredes se absorbe sonido y el proceso tiene una duración limitada. Eco El eco es otro fenómeno relacionado con la reflexión del sonido. Se produce cuando el sonido inicial ya se ha extinguido y aparece un sonido igual de forma reflejada. Cuando la superficie reflectante está suficientemente lejos, nuestro oído puede percibir por separado la onda directa y la reflejada. Si la separación temporal entre ambos sonidos es superior a 0,1 (s), el sonido repetido se llama eco. es decir, el oído puede percibir dos sonidos al menos.  Si suponemos que la rapidez del sonido es de 340 m/s, entonces la distancia que recorre en 0,1 (s) es de 34 (m), pero como la onda debe ir y venir, entonces es de 17 (m).
Show less
No tags specified
Ondas Mecánicas y Electromagnéticas     ONDAS MECÁNICAS: En ellas se propaga energía mecánica, y, para propagarse,  necesitan de un medio material que puede ser gaseoso (aire), líquido (agua) o sólido (cuerdas, resortes, suelo, pared).  Por ejemplo: el sonido, una onda en la tierra (onda sísmica), onda en el agua (ola), onda en una cuerda (guitarra), etc. ONDAS ELECTROMAGNÉTICAS: En ellas se propaga energía electromagnética, no necesitan de un medio material para propagarse. Por ejemplo: luz visible, rayos X, rayos infrarrojos, rayos ultravioletas, ondas de radio, microondas, etc.   En estas últimas, lo que vibra no son partículas materiales sino campos eléctricos y magnéticos, en consecuencia, pueden propagarse en el vacío. Así se explica que lleguen a la superficie terrestre la luz y otras radiaciones no visibles provenientes del Sol, las estrellas y otras galaxias muy lejanas.
Show less
No tags specified
Óptica ondulatoria   se ocupa de los fenómenos de difracción, interferencia y polarización, que pueden explicarse admitiendo la naturaleza ondulatoria de la luz. Supone que la luz se propaga según ondas transversales. Los rayos luminosos son las trayectorias perpendiculares a la superficie de la onda. Reflexión y Refracción[editar] Cuando un rayo luminoso que viaja por un medio incide en una superficie que lo separa de otro medio con distintos índices de refracción, ocurren éstos dos fenómenos. Los rayos que pasan al otro medio se dicen que han sufrido una Refracción y se les denomina rayos refractados. Y los rayos que no cambian de medio, podríamos decir que "rebotan", han sufrido una Reflexión y se les denomina rayos reflejados. Principio de Huygens-Fresnel[editar] La onda reflejada (y también la refractada) está formada por la envolvente de las ondas elementales producidas al mismo tiempo en puntos distintos de la superficie. El rayo reflejado es perpendicular a la onda reflejada, como el rayo incidente respecto a la onda incidente. Principio de Fermat[editar] El rayo incidente se divide en dos partes, de manera que satisface las condiciones para las cuales el recorrido entre dos puntos a través de la superficie de separación, se realiza en un tiempo mínimo. Reflexión total[editar] Este fenómeno se da cuando el rayo de luz no es refractado. Si el rayo proviene de un medio con un índice de refracción mayor n2, incide sobre una superficie con índice de refracción menor, n1, se refleja totalmente: {\displaystyle \sin \alpha ={n_{1} \over n_{2}}} Donde α es el ángulo de incidencia que recibe el nombre de ángulo límite o crítico. Birrefringencia o doble refracción[editar] La birrefringencia, también conocida como doble refracción, se observa cuando una radiación luminosa incide sobre un medio no isótropo, la onda se descompone en dos distintas que se propagan en diferentes direcciones. La primera sigue las leyes normales de la refracción y se llama rayo ordinario; la otra tiene una velocidad y un índice de refracción variables y se llama rayo extraordinario. Ambas ondas están polarizadas perpendicularmente.
Show less
No tags specified
Óptica geométrica     En física, la óptica geométrica parte de las leyes fenomenológicas de Snell de la reflexión y la refracción. A partir de ellas, basta hacer geometría con los rayos luminosos para la obtención de las fórmulas que corresponden a los espejos, dioptrio y lentes , obteniendo así las leyes que gobiernan los instrumentos ópticos a que estamos acostumbrados. La óptica geométrica usa la noción de rayo luminoso; es una aproximación del comportamiento que corresponde a las ondas electromagnéticas (la luz) cuando los objetos involucrados son de tamaño mucho mayor que la longitud de onda usada; ello permite despreciar los efectos derivados de la difracción, comportamiento ligado a la naturaleza ondulatoria de la luz. Esta aproximación es llamada de la Eikonal y permite derivar la óptica geométrica a partir de algunas de las ecuaciones de Maxwell. Propagación de la luz. Reflexión y refracción Como se indicó anteriormente, en la óptica geométrica, la luz se propaga como una línea recta a una velocidad aproximada de 3*108 ms-1. La naturaleza ondulatoria de la luz puede ser despreciada debido a que aquí la luz es como un chorro lineal de partículas que pueden colisionar y, dependiendo del medio, se puede conocer cual es su camino a seguir. Estos rayos pueden ser absorbidos, reflejados o desviados siguiendo las leyes de la mecánica.   La segunda ley de la reflexión nos indica que el rayo incidente, el rayo reflejado y la normal con respecto a la superficie reflejada están en el mismo plano.2​ Ley de Snell. Artículo principal: Ley de Snell El índice de refracción "n" de un medio viene dado por la siguiente expresión, donde v es la velocidad de la luz en ese medio, y "c" la de la luz en el vacío: {\displaystyle n={\frac {c}{v}}} Ya que la velocidad de la luz en los materiales depende del índice de refracción, y el índice de refracción depende de la frecuencia de la luz, la luz a diferentes frecuencias viaja a diferentes velocidades a través del mismo material. Esto puede causar distorsión de ondas electromagnéticas que consisten de múltiples frecuencias, llamada dispersión. Los ángulos de incidencia (i) y de refracción (r) entre dos medios y los índices de refracción están relacionados por la Ley de Snell. Los ángulos se miden con respecto al vector normal a la superficie entre los medios: {\displaystyle n_{i}\cdot \sin(\alpha _{i})=n_{r}\cdot \sin(\alpha _{r})} Lentes:   Las lentes con superficies de radios de curvatura pequeños tienen distancias focales cortas. Una lente con dos superficies convexas siempre refractará los rayos paralelos al eje óptico de forma que converjan en un foco situado en el lado de la lente opuesto al objeto. Una superficie de lente cóncava desvía los rayos incidentes paralelos al eje de forma divergente; a no ser que la segunda superficie sea convexa y tenga una curvatura mayor que la primera, los rayos divergen al salir de la lente, y parecen provenir de un punto situado en el mismo lado de la lente que el objeto. Estas lentes sólo forman imágenes virtuales, reducidas y no invertidas. Si la distancia del objeto es mayor que la distancia focal, una lente convergente forma una imagen real e invertida. Si el objeto está lo bastante alejado, la imagen será más pequeña que el objeto. Si la distancia del objeto es menor que la distancia focal de la lente, la imagen será virtual, mayor que el objeto y no invertida. En ese caso, el observador estará utilizando la lente como una lupa o microscopio simple. El ángulo que forma en el ojo esta imagen virtual aumentada (es decir, su dimensión angular aparente) es mayor que el ángulo que formaría el objeto si se encontrara a la distancia normal de visión. La relación de estos dos ángulos es la potencia de aumento de la lente. Una lente con una distancia focal más corta crearía una imagen virtual que formaría un ángulo mayor, por lo que su potencia de aumento sería mayor. La potencia de aumento de un sistema óptico indica cuánto parece acercar el objeto al ojo, y es diferente del aumento lateral de una cámara o telescopio, por ejemplo, donde la relación entre las dimensiones reales de la imagen real y las del objeto aumenta según aumenta la distancia focal. La cantidad de luz que puede admitir una lente aumenta con su diámetro. Como la superficie que ocupa una imagen es proporcional al cuadrado de la distancia focal de la lente, la intensidad luminosa de la superficie de la imagen es directamente proporcional al diámetro de la lente e inversamente proporcional al cuadrado de la distancia focal. Por ejemplo, la imagen producida por una lente de 3 cm de diámetro y una distancia focal de 20 cm sería cuatro veces menos luminosa que la formada por una lente del mismo diámetro con una distancia focal de 10 cm. La relación entre la distancia focal y el diámetro efectivo de una lente es su relación focal, llamada también número f. Su inversa se conoce como abertura relativa. Dos lentes con la misma abertura relativa tienen la misma luminosidad, independientemente de sus diámetros y distancias focales. Espejos Artículo principal: Espejo Hay tres tipos de espejos: Planos: si el espejo no presenta curvatura diremos que es un espejo plano. Cóncavos o divergentes: si la curvatura de un espejo es "hacia adentro" desde el punto de vista observado diremos que es un espejo cóncavo. Convexos o convergentes: si la curvatura de un espejo esta "hacia afuera" desde el punto de vista observado diremos que es un espejo convexos.
Show less
Show full summary Hide full summary