Quadratic Equations

RONALD C DONCERAS

Assistant Professor III
Department of Teacher Education
Visayas State University Tolosa

QUADRATIC EQUATION

$>$ is an equation that contain a second-degree term and no term of a higher degree in the form,

$$
a x^{2}+b x+c=0
$$

where a, b, and c, are real numbers; and $a \neq 0$.

Examples

1. $x^{2}-x+4=0$
2. $2 x^{2}+5=0$
3. $x+3 x^{2}-1=0$
4. $-4 x^{2}+6=0$

Finding the Roots of a Quadratic Equation

$>$ a number is a root of a quadratic equation if, when the number is substituted for the variable, the equation becomes a true statement.

METHODS OF SOLVING QUADRATIC EQUATIONS

>Extracting the Square Roots
>Factoring Method
>Completing the Square
>Quadratic Formula

Solution by Extracting the Square Roots

> To solve a quadratic equation of the form $\mathrm{x}^{2}=\mathbf{k}$, where $\mathrm{k}=0$,

- Solve the equation for the square of the unknown number.
- Find the square roots of both members of the equation.

Theorem:

Let $k \geq 0$. If $x^{2}=k$, then

$$
\mathrm{x}=\sqrt{\mathrm{k}} \text { or } \mathrm{x}=-\sqrt{\mathrm{k}}
$$

Note:

$$
\begin{aligned}
& \mathrm{x}=\sqrt{\mathrm{k}} \text { or }-\sqrt{\mathrm{k}} \text { can be written } \\
& \text { as } \mathrm{x}= \pm \sqrt{\mathrm{k}} .
\end{aligned}
$$

Example

1. $x^{2}-121=0$

Solution:
Applying the addition property of equality, we have

$$
\begin{gathered}
x^{2}=121 \\
\sqrt{x^{2}}=\sqrt{121} \\
x= \pm 11
\end{gathered}
$$

Example

2. $3 x^{2}-27=0$

Applying the addition and multiplication property of equality, divide both side by 3 , we have

$$
\begin{aligned}
3 x^{2} & =27 \\
\sqrt{x^{2}} & =\sqrt{9} \\
x & = \pm 3
\end{aligned}
$$

Solution of a Quadratic Equation by Factoring

Theorem:

Zero-Product Property of Real Numbers If a and b are real numbers, then $a b=0$ if, and only if, $a=0$ or $b=0$.

Solution of a Quadratic Equation by Factoring

Consider the equation $7 x y=0$. This means that either $x=0, y=0$ or both x and y are equal to 0.

NOTE: If $a x^{2}+b x+c$ is factorable, then $a x^{2}+b x+c=0$ can be solved by factoring.
> To solve a quadratic equation by factoring:

1. Transform the given equation to the form $a x^{2}+$ $b x+c=0$.
2. Factor the left member of the equation.
3. Equate each factor to zero.
4. Solve each resulting equation.
5. Check in the original equation.

Example

1. Solve by factoring: $x^{2}-6 x=-8$.

Solution:

$$
\begin{array}{ll}
x^{2}-6 x+8=0 & \text { Transform to standard form. } \\
(x-4)(x-2)=0 & \text { Factor the left member. } \\
x-4=0 & x-2=0 \\
x=4 & x=2
\end{array} \quad \text { Use the Z-P Property. }
$$

Check: If $\mathrm{x}=4$

$$
\begin{aligned}
& 16-24+8=0 \\
& 0=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { If } x=2 \\
& \quad \begin{array}{l}
4-12+8=0 \\
0=0
\end{array}
\end{aligned}
$$

Solution By Completing the Square

> Quadratic equations that cannot be easily solved by factoring can be solved by using completing the square method.

Solution By Completing the Square

$>$ A perfect square trinomial is a trinomial that can be expressed as the square of a binomial.

Examples

The following are examples of perfect square trinomials:

$$
\begin{aligned}
& x^{2}+4 x+4=(x+2)^{2} \\
& x^{2}-6 x+9=(x-3)^{2}
\end{aligned}
$$

STEPS

To solve a quadratic equation by completing the square:

1. Transform the equation to the form

$$
a x^{2}+b x=c, \text { where } a=1
$$

2. Add to each member of the equation the square of half the coefficient of x.

STEPS

3.Find the square root of each member of the equation, writing the double sign " \pm " before the square root of the right member.
4.Solve the resulting linear equation.
5.Check in the original equation.

Example

1. Solve for $x: x^{2}-2 x-2=0$.

Solution:

$$
x^{2}-2 x=2
$$

$x^{2}-2 x+1=2+1$

Separate the constant from terms containing x .
Add $\left(\frac{-2}{2}\right)^{2}$ or 1 to both sides
of the equation to form a perfect square trinomial.

Example

Cont...

$(x-1)^{2}=3$
$x-1= \pm \sqrt{3}$

Rewrite the left member as a square of a binomial.
Extract the square root of both sides and prefix \pm sign to check to the result on the right member.

Example

Cont...

Solve the resulting linear equations and check:

$$
\begin{aligned}
& x-1= \pm \sqrt{3} \quad x-1=-\sqrt{3} \\
& x=1+\sqrt{3} \quad x=1-\sqrt{3}
\end{aligned}
$$

Example

2. Solve for $\mathrm{x}: 2 x^{2}-3 x-2=0$

Solution:

$$
\begin{aligned}
& \frac{2 x^{2}}{2}-\frac{3 x}{2}-\frac{2}{2}=0 \\
& x^{2}-\frac{3 x}{2}=1
\end{aligned}
$$

$$
x^{2}-\frac{3 x}{2}+\frac{9}{16}=1+\frac{9}{16} \quad \text { Add }\left[\frac{\left(-\frac{3}{2}\right)}{2}\right]^{2} \text { or } \frac{9}{16} \text { to both }
$$

sides of the equation to
form a perfect square trinomial.

Example

Cont...

$x-\frac{3}{4}= \pm \sqrt{\frac{25}{16}}$
$x=\frac{3}{4} \pm \frac{5}{4}$
Extract the square root of both sides.
Solve each resulting equation.

Solution set: $\left\{2,-\frac{1}{2}\right\}$.

Solution by Using the Quadratic Formula

The quadratic formula states that if $a x^{2}+b x+c=0$, with $\mathrm{a} \neq 0$, then

$$
\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example

1. Solve the equation $x^{2}-3 x+1=0$.

Solution:

$$
\begin{aligned}
& \mathrm{a}=1, \mathrm{~b}=-3, \text { and } \mathrm{c}=1 \\
& x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(1)}}{2(1)}
\end{aligned}
$$

Example

Cont...

$$
\begin{gathered}
=\frac{3 \pm \sqrt{9-4}}{2} \\
=\frac{3 \pm \sqrt{5}}{2}
\end{gathered}
$$

The roots of the equation are $\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$.

WORD PROBLEM

Example:

1. If the square of a number is added to 3 times to the number, the sum is 108 . Find the number.

WORD PROBLEM

Solution:
Let x be the number.

$$
\begin{aligned}
& x^{2}+3 x=108 \\
& x^{2}+3 x-108=0 \\
& (x+12)(x-9)=0 \\
& x+12=0 \\
& x=-12
\end{aligned} \quad \text { or } \quad \begin{aligned}
& x-9=0 \\
& x=9
\end{aligned}
$$

The number is 9 or -12 .

WORD PROBLEM

2. The speed at which water travels in a pipe can be measured by directing the flow through an elbow and measuring the height it spurts out on the top. If the elbow's height is 10 cm , the equation relating to the height of the water above the elbow (in cm) and its velocity v (in $\mathrm{cm} / \mathrm{sec}$) is given by $\mathrm{v}^{2}=1960(\mathrm{~h}+10)$. Find v if h $=2 \mathrm{~cm}$.

WORD PROBLEM

- Solution:

Substitute the value of h in the formula:

$$
\begin{aligned}
v^{2} & =1960(2+10) \\
& =1960(12) \\
& =23,520
\end{aligned}
$$

$$
V=\sqrt{23520}=153.36 \mathrm{~cm} / \mathrm{sec}
$$

WORD PROBLEM

Direction: Solve the following problems.

1. Martha had a square patio. After expanding the length by 1.5 m and the width by 0.5 m , the area become $20 \mathrm{~m}^{2}$. What was the original area of the patio?

WORD PROBLEM

Direction: Solve the following problems.

1. A square piece of cardboard is to be used to form a box without a top by cutting off squares, 5 cm on a side from each corner and then folding up the sides. If the volume of the box must be $320 \mathrm{~cm}^{3}$, what must be the length of a side of the cardboard.

Thank
 you

