

ASIGNATURA: INFORMÁTICA DE SISTEMAS

Tema 3: Álgebra de Boole

¿Qué sabrás al final del capítulo?

- Leyes y propiedades del Algebra de Boole
- Simplificar funciones utilizando el Algebra de Boole
- Analizar circuitos mediante Algebra de Boole y simplificarlos
- Pasar de una tabla de verdad a Suma de Productos y Producto de Sumas
- Utilizar Mapas de Karnaugh para simplificar funciones lógicas

Algebra de Boole binaria

En 1860 George Boole desarrolló un Algebra en la que los valores de A y B sólo podían ser "verdadero" o "falso" (1 ó 0). Se llama *Algebra de Boole* y se utiliza en Electrónica Digital

Elementos: {0,1}

Operadores:

Suma Booleana: es la función lógica OR

$$X=A+B$$

Producto Booleano: es la función lógica AND

$$X = AB$$

Axiomas

UNIFRANZ FRANZ FRA

Axioma: Propiedad Conmutativa

$$A+B=B+A$$

El orden en la OR no importa

$$AB = BA$$

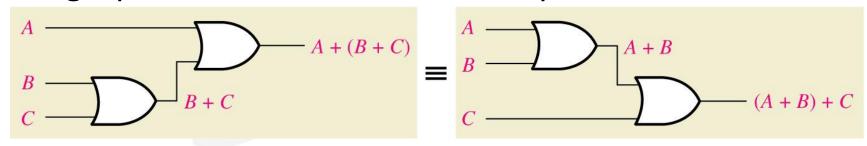
El orden en la AND no importa

$$\begin{array}{c|c}
A & \hline
B & \hline
B & \hline
A & \hline
B & \hline
B$$

Axioma: Propiedad asociativa

$$A + (B + C) = (A + B) + C$$

Agrupar variables en la OR no importa



$$A (B C) = (A B) C$$

Agrupar variables en la AND no importa

$$\begin{array}{c}
A \\
B \\
C
\end{array}$$

$$A(BC) \\
B \\
C$$

$$C$$

$$AB \\
C$$

$$C$$

$$C$$

$$AB \\
C$$

$$C$$

$$C$$

$$C$$

$$AB \\
C$$

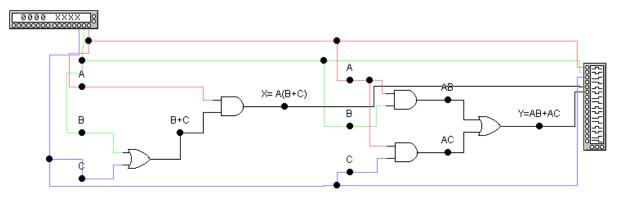
$$C$$

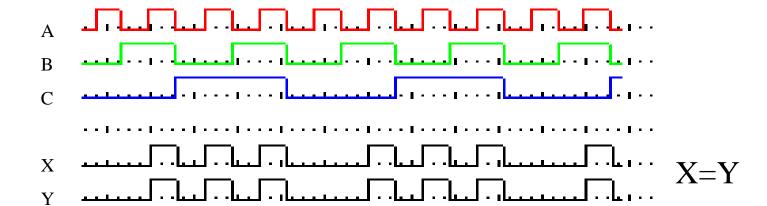
$$C$$

UNIFRANZ

Axioma: Propiedad distributiva I

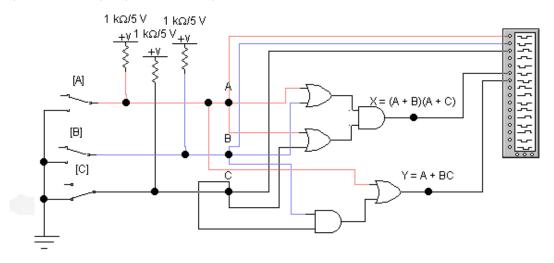
$$A(B + C) = AB + AC$$

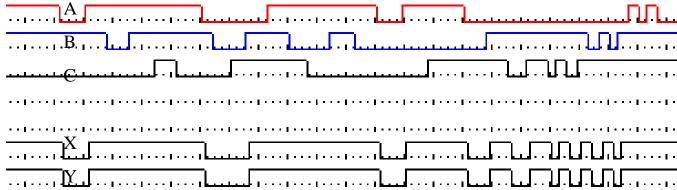




Axioma: Propiedad distributiva II

$$A+BC = (A+B)(A+C)$$

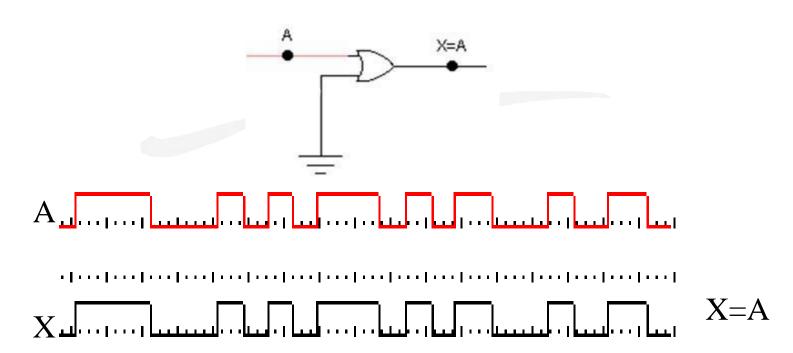




Axioma: Elemento identidad (0 para +)

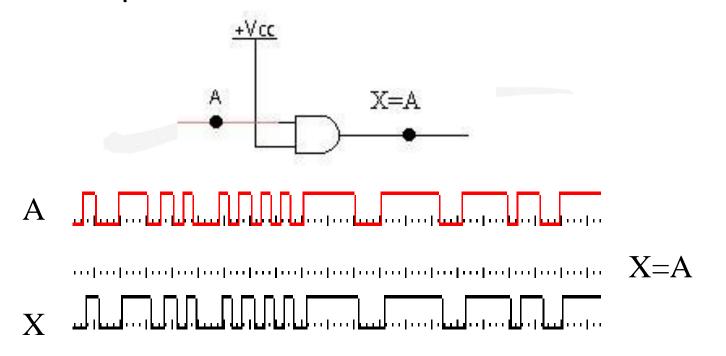
A+0=A

Hacer una operación OR con 0 no cambia nada.



Axioma: Elemento identidad (1 para •) A·1=A

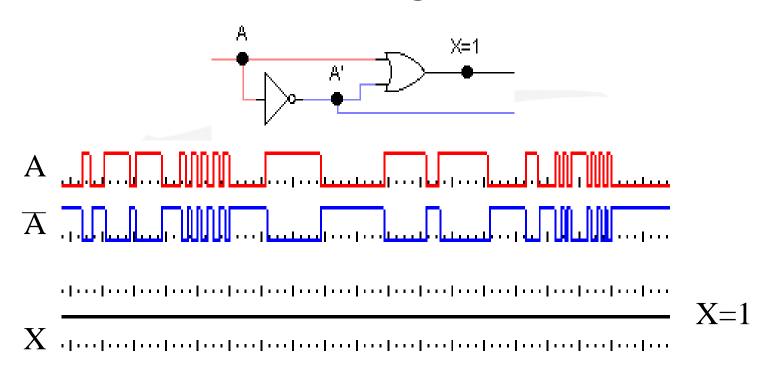
Hacer una operación AND con 1 no cambia nada



Axioma: Elemento complemento

$$A+\overline{A}=1$$

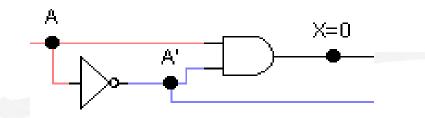
O bien A o A serán 1, luego la salida será 1

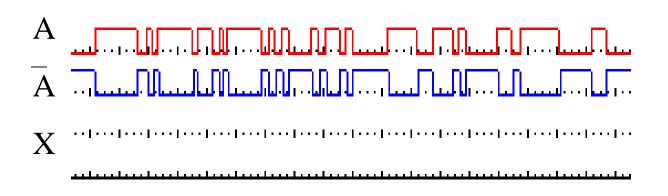


Axioma: Elemento complemento

$$A \cdot \overline{A} = 0$$

Bien A o A son O luego la salida será O.

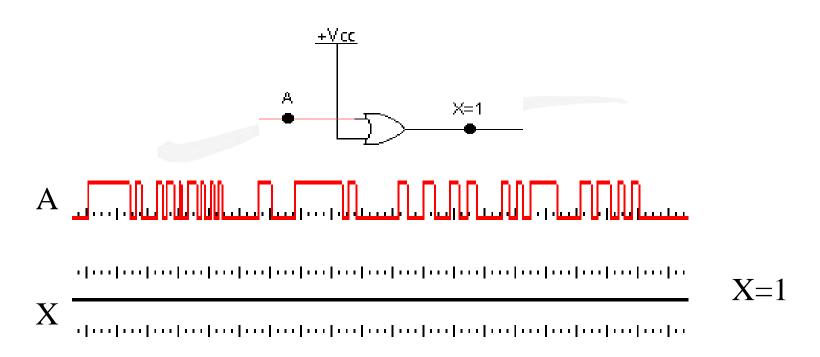




X=0

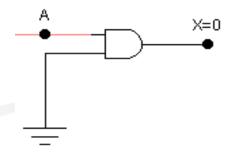
Teorema: A+1=1 (T. Complementación)

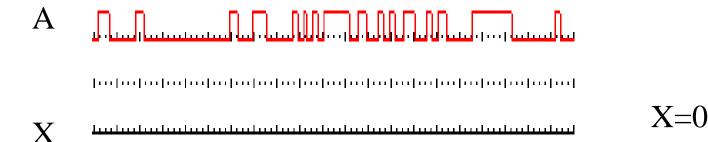
Hacer una operación OR con 1 da siempre 1.



Teorema: A•0=0 (T. Complementación)

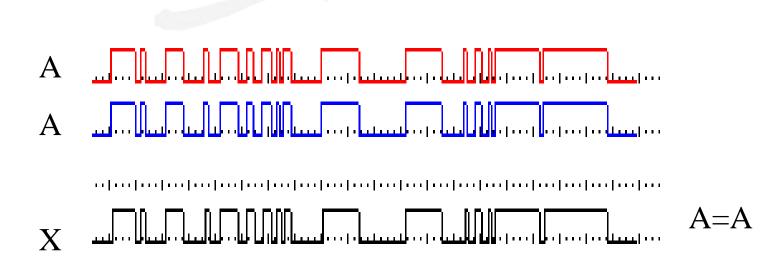
Hacer una operación AND con 0 siempre da 0





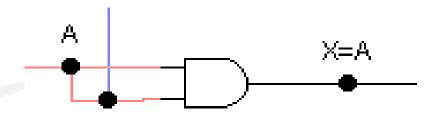
Teorema: A+A=A (T. Idempotencia)

Hacer una operación OR consigo mismo da el mismo resultado



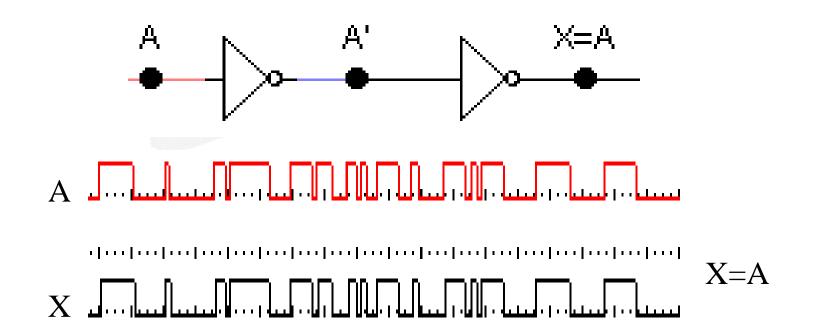
Teorema: $A \cdot A = A$ (T. Idempotencia)

Hacer una operación AND consigo mismo da el mismo resultado



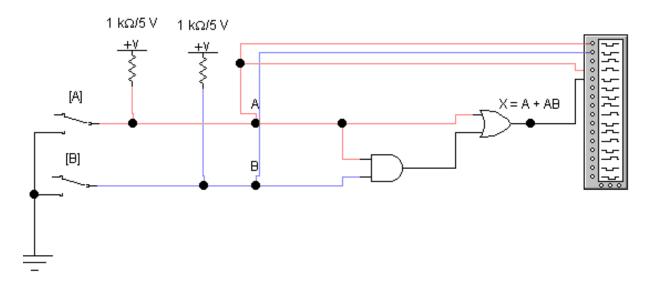
Teorema: A = A (T. Involución)

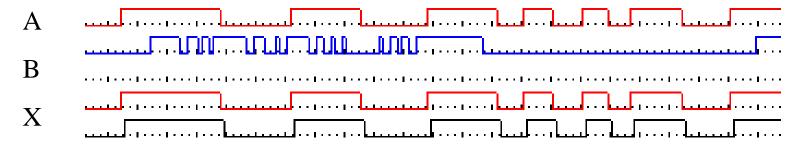
Si negamos algo dos veces volvemos al principio



Teorema: A + AB = A

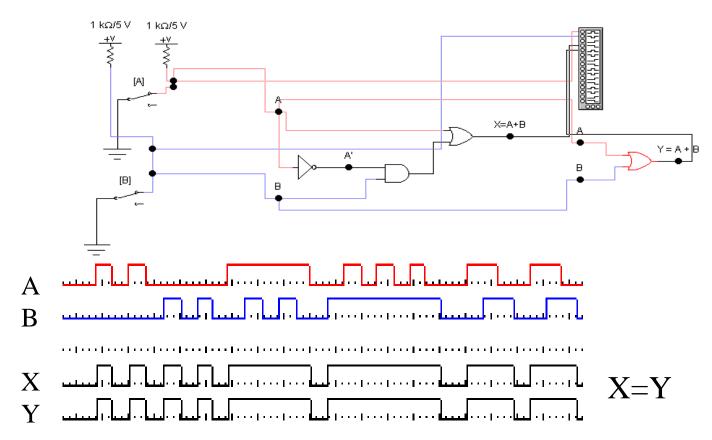
(T. Absorción I)





Teorema A + AB = A + B (T. Absorción II)

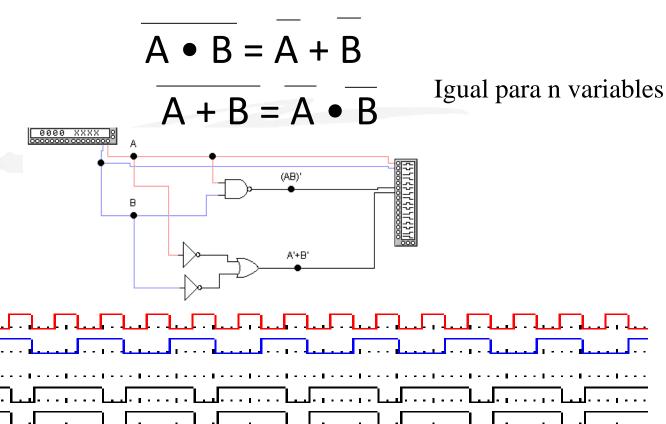
Si A es 1 la salida es 1 Si A es 0 la salida es B



UNIFRANZ FRANZ FRANZ FRANZ TAMPO

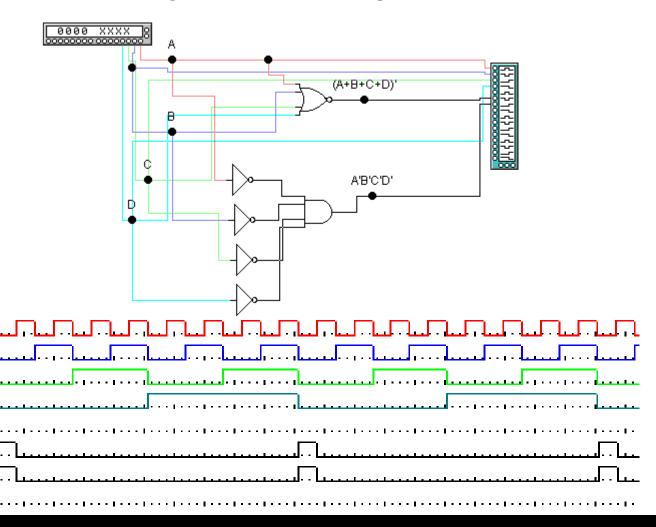
Leyes de De Morgan (2 variables)

De Morgan ayuda a simplificar circuitos digitales usando NOR y NAND



Leyes de De Morgan (más de 2 variables) UNIFRANZ

$$A + B + C + D = A \cdot B \cdot C \cdot D$$



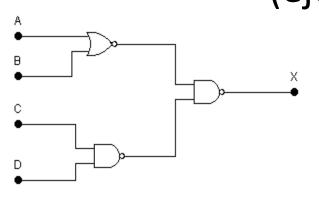
Análisis Booleano de Funciones Lógicas

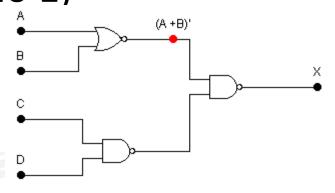
El propósito de este apartado es obtener expresiones booleanas simplificadas a partir de un circuito

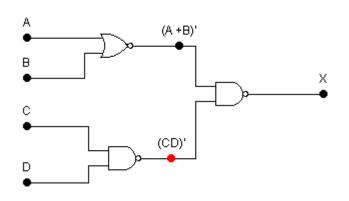
Se examina puerta a puerta a partir de sus entradas

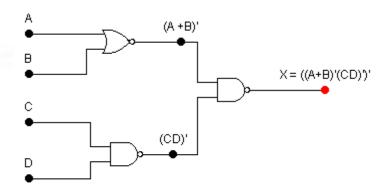
Se simplifica usando las leyes y propiedades booleanas.

Cálculo de la expresión algebraica de salida (ejemplo 1)

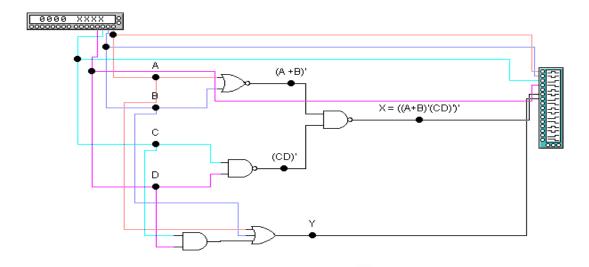


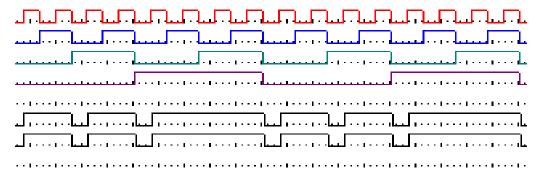






$$(A + B) (CD) = (A + B) + (CD) = A + B + CD$$





X e Y son iguales

Cálculo de la expresión algebraica de salida (ejemplo 2)

$$X = \overline{\overline{(A+B)}} \, \overline{C} + \overline{\overline{CD}} + \overline{B}$$

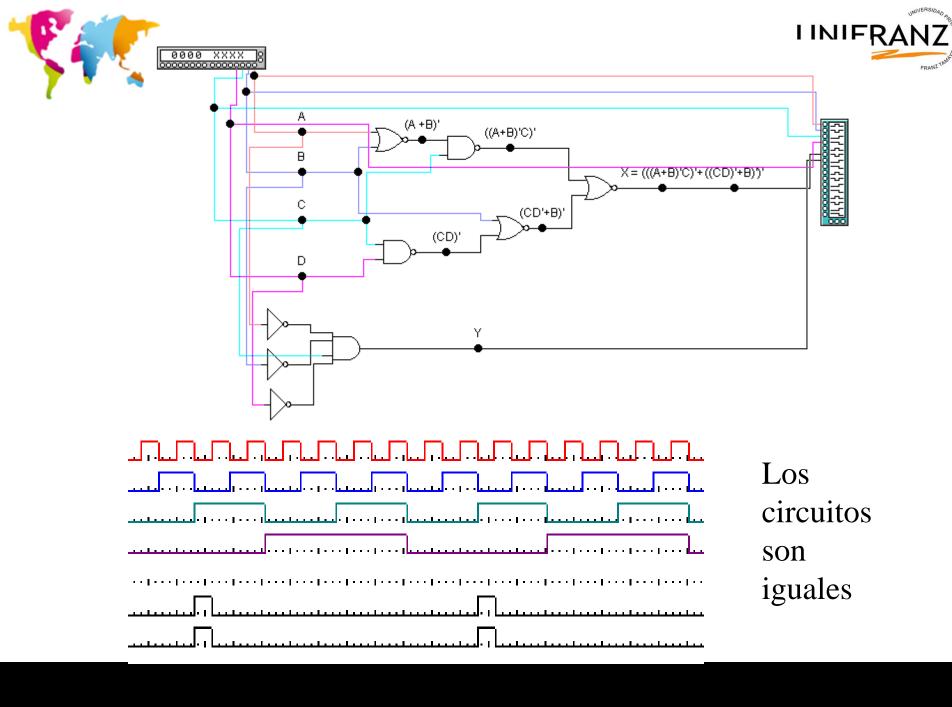
$$= \overline{\overline{(A+B)}} \, \overline{C} \cdot \overline{\overline{CD}} + \overline{B}$$

$$= \overline{\overline{(A+B)}} \, C \cdot (\overline{\overline{CD}} + \overline{B})$$

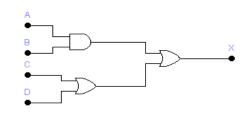
$$= \overline{\overline{A}} \, \overline{\overline{B}} \, C \cdot (\overline{\overline{C}} + \overline{\overline{D}} + \overline{B})$$

$$= \overline{\overline{A}} \, \overline{\overline{B}} \, \overline{C} \, \overline{\overline{C}} + \overline{\overline{A}} \, \overline{\overline{B}} \, \overline{C} \, \overline{\overline{D}} + \overline{\overline{A}} \, \overline{\overline{B}} \, \overline{C} \, \overline{\overline{D}}$$

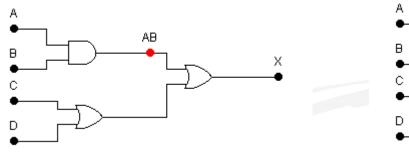
$$= \overline{\overline{A}} \, \overline{\overline{B}} \, \overline{C} \, \overline{\overline{D}}$$

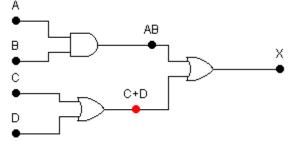


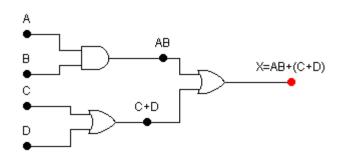
Ejemplo 3



Puerta a puerta a partir de sus entradas



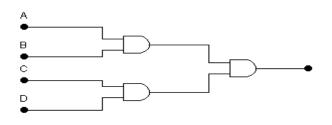


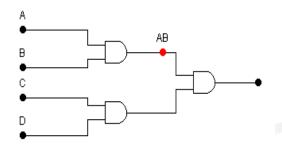


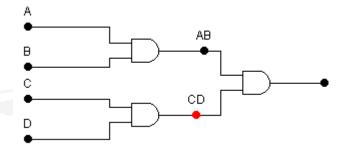
$$X = AB + (C+D)$$

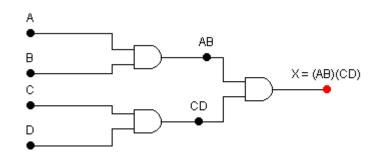
$$X = AB + C + D$$

Ejemplo 4





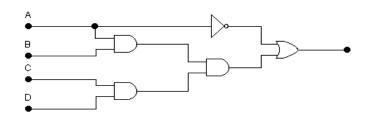


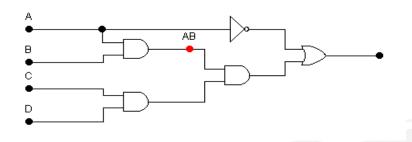


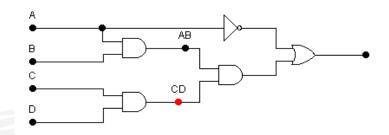
$$X = (AB)(CD)$$

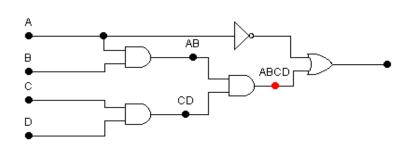
$$X = ABCD$$

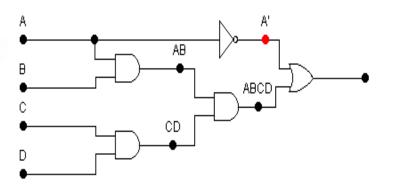
Ejemplo 5







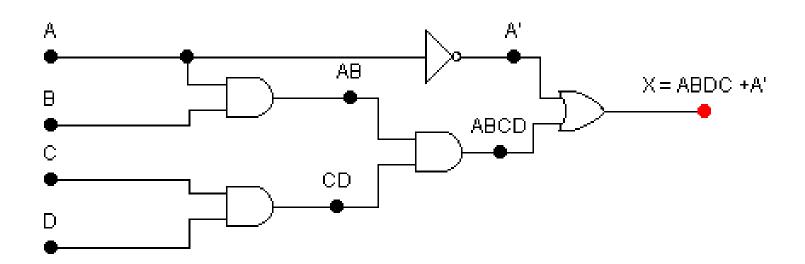


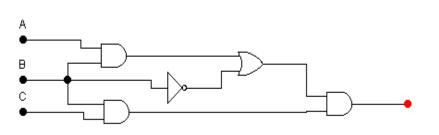


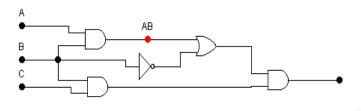
$$X = ABCD + A$$

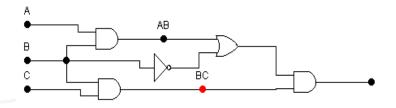
Simplificando:

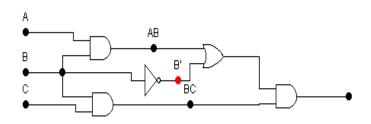
$$X = A + BCD$$

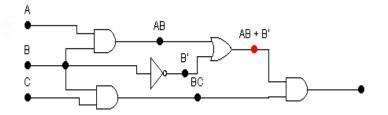


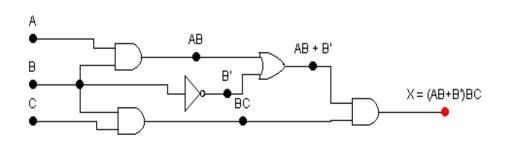












En la siguiente transparencia se ve cómo las dos cosas son lo mismo

$$X = (AB + \overline{B})BC$$

Usando la propiedad distributiva:

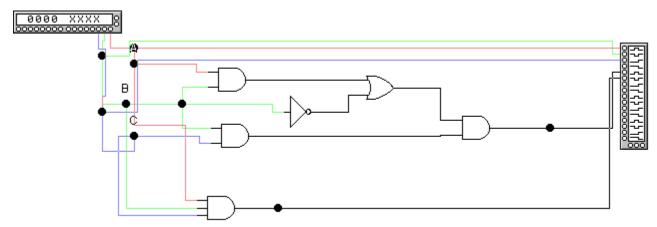
$$X = ABBC + BBC$$

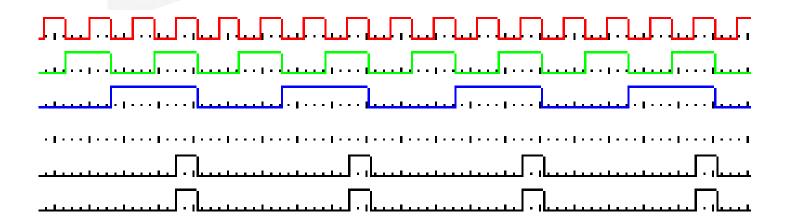
$$X = ABC + \overline{B}BC$$

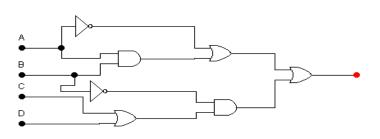
$$X = ABC + 0 \cdot C$$

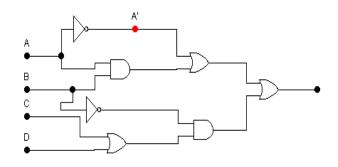
$$X = ABC + 0$$

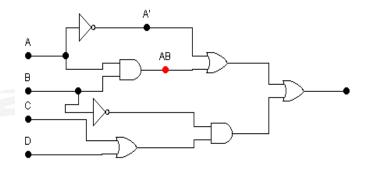
$$X = ABC$$

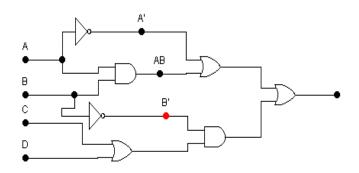


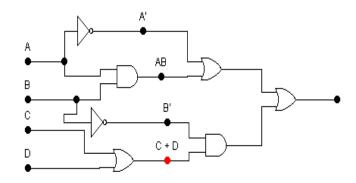


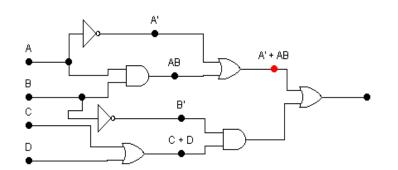


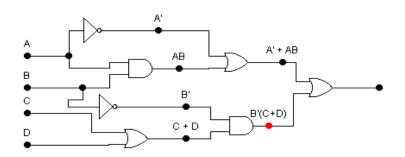


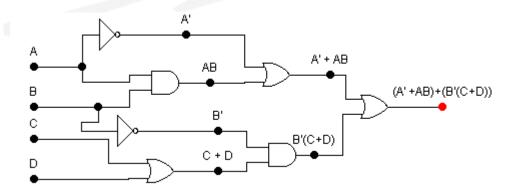












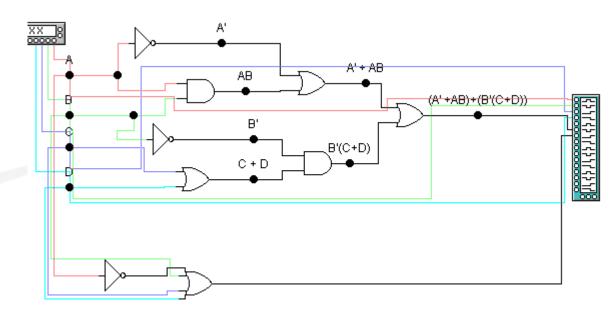
$$X = (A + B) + (B(C + D))$$

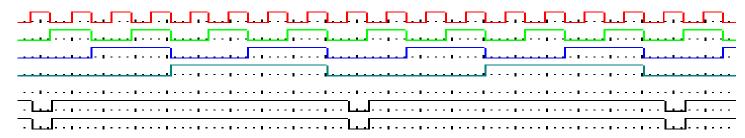
$$X = (\overline{A} + B) + (\overline{BC} + \overline{BD})$$

$$X = \overline{A} + B + \overline{BC} + \overline{BD}$$

$$X = A + B + C + BD$$

$$X = \overline{A} + B + C + D$$





Expresiones booleanas desde tablas de verdad

Suma de productos

$$Y = A \cdot \overline{B} \cdot C + B \cdot C \cdot \overline{D} + A \cdot C \cdot \overline{D}$$
 o directamente

Producto de sumas

$$Y=(A+B+C)\cdot(D+C)\cdot(E+F)$$

Sumas de Productos (SP)

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Sea una función F(ABCD) que sólo es 1 para los casos: 0011, 1011, 1110, 1111

Cuando ABCD=0011, únicamente la expresión producto ABCD es 1.

Cuando ABCD=1011, únicamente la expresión producto ABCD es 1

...y así sucesivamente... resultando que

Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

Productos de Sumas (PS)

Sea una función F(ABCD) que sólo es 0 para los casos: 0010, 0100, 0111, 1010, 1101

Cuando ABCD=0010, sólo la suma $A+B+\overline{C}+D$ es 0.

Cuando ABCD=0100, sólo la suma $A+\overline{B}+C+D$ es 0, ...

...y así sucesivamente...

La función F es 0 (o bien \overline{F} es 1)

cuando ABCD=0010

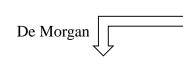
o cuando ABCD=0100

o cuando ABCD=0111

o cuando ABCD=1010

o cuando ABCD=1101

y en ningún otro caso más.



F=ABCD+ABCD+ABCD+ABCD+ABCD

$$F = (A + B + \overline{C} + D)(A + \overline{B} + C + D)(A + \overline{B} + \overline{C} + \overline{D})(\overline{A} + B + \overline{C} + D)(\overline{A} + \overline{B} + C + \overline{D})$$

UNIFRA

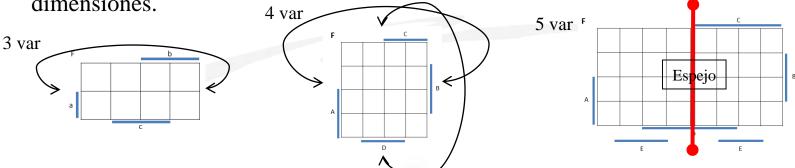
Minimización de funciones lógicas

Mapa de Karnaugh

Se usa para minimizar el número de puertas requeridas en un circuito digital. Es adecuado en vez de usar leyes y propiedades cuando el circuito es grande y/o la función es de entre 3 a 6 variables

<u>Un MK contiene</u> en la misma tabla de verdad de la función pero dispuesta en dos

dimensiones.



- MK, la adyacencia puede existir doblando el mapa sobre sí mismo o mediante reflexión en ejes verticales y horizontales
- Emplea un código Gray, que se caracteriza porque entre los códigos consecutivos de celdas advacentes se diferencian en 1 bit.

Mapas de Karnaugh de 3 variables

В

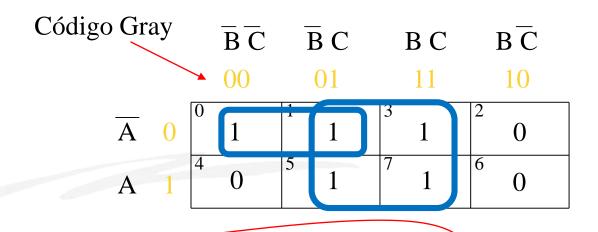
0

1

1

0

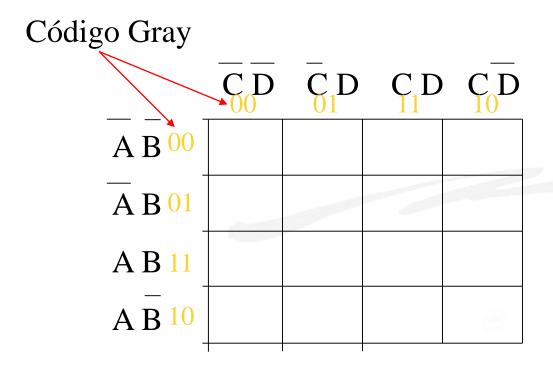
Α	В	С	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

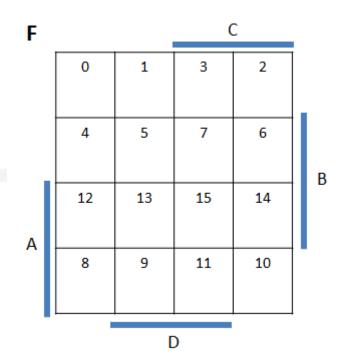


 $F = C + \overline{A}\overline{B}$

- Dos celdas adyacentes a 1 implican a 2 variables
- Cuatro celdas adyacentes a 1 implican a 1 variable
- Ocho celdas advacentes a 1 constituyen función de valor 1

Mapa de Karnaugh de 4



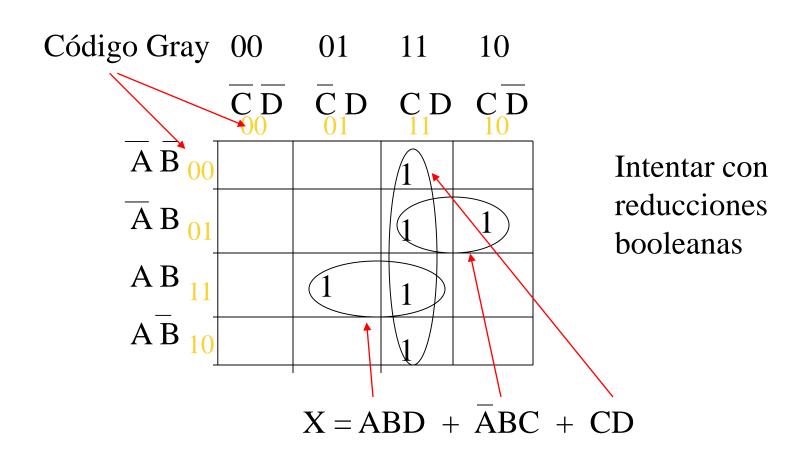


- •Una celda a 1 implica a 4 variables
- •Dos celdas adyacentes a 1 implican a 3 variables
- •Cuatro celdas adyacentes a 1 implican a 2 variables
- •Ocho celdas adyacentes a 1 implican a 1 variable

Ejemplo 1.

$$X = A B C D + A B C D + A B C D + A B C D +$$

 $A B C D + A B C D$

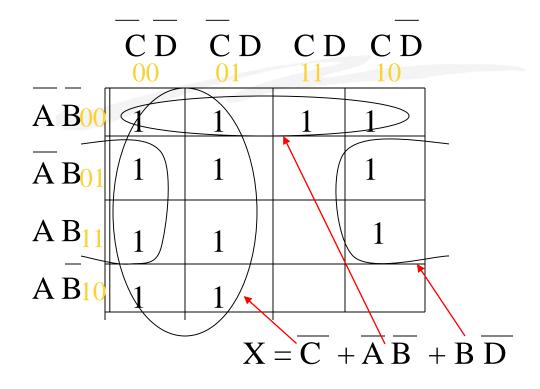


LJCIIIPIO Z.

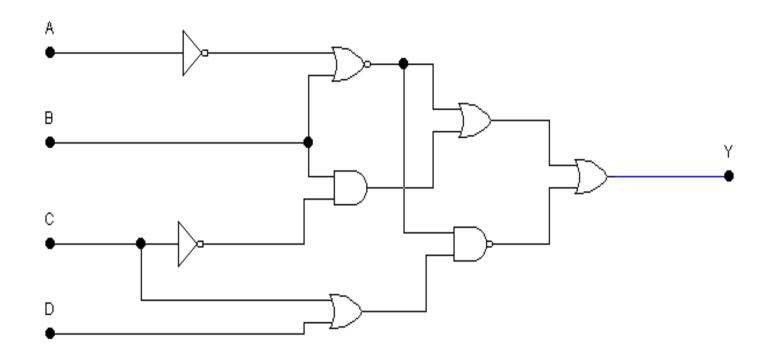
Z = B C D + B C D + C D + B C D + A

UNIFRANZ

BC



Ejemplo 3. Dado un circuito encontrar otro más sencillo usando Mapas de Karnaugh



Primero lo pasamos a Suma de Productos

$$Y = \overline{\overline{A} + B} + B\overline{C} + (\overline{\overline{A} + B}) (C + D)$$

$$Y = \overline{\overline{A}} \overline{B} + B \overline{C} + \overline{\overline{A}} \overline{B} (C + D)$$

$$Y = A\overline{B} + B\overline{C} + A\overline{B}C + A\overline{B}D$$

$$Y = A\overline{B} + B\overline{C} + A\overline{B}C\overline{A}\overline{B}D$$

$$Y = A \overline{B} + B \overline{C} + (\overline{A} + B + \overline{C}) (\overline{A} + B + \overline{D})$$

$$Y = A \overline{B} + B \overline{C} + \overline{A} + \overline{A}B + \overline{A}\overline{D} + \overline{A}B + B + B\overline{D} + \overline{A}\overline{C} + B\overline{C} + \overline{C}D$$

Sacando factor común A (en rojo) y B (en azul), queda

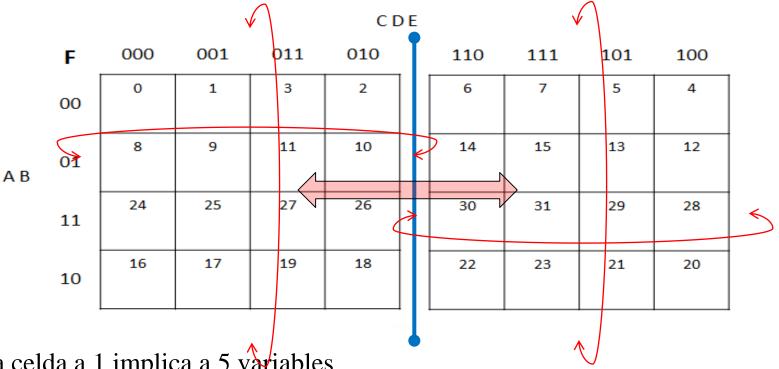
$$Y = A \overline{B} + A (1+...) + B(1+...) + CD = A + B + CD = 1$$

	$\frac{\overline{C}}{00}$	\overline{CD}	CD	$C_{10}^{\overline{D}}$
$\overline{A} \overline{B}_{00}$	1	1	1	1
$\overline{A} B_{0}$	1	1	1	$1 \setminus$
AB	1	1	1	1
A B ₁₀	1	1	1	1
ı				

 $\mathbf{Z} = 1$

Mapa de Karnaugh de 5

variables



- •Una celda a 1 implica a 5 variables
- •Dos celdas adyacentes a 1 implican a 4 variables
- •Cuatro celdas adyacentes a 1 implican a 3 variables
- •Ocho celdas adyacentes a 1 implican a 2 variables

F							(
	0	1	3	2		6	7	5	4	
	8	9	11	10		14	15	13	12	В
A	24	25	27	26		30	31	29	28	
	16	17	19	18		22	23	21	20	
					D)				
		E		-				E	_	

SIMPLIFICACIÓN POR KARNAUGH

- 1) Realizar agrupaciones de 1's, con sus adyacentes, lo mayor posibles, pero siempre en cantidades <u>potencias de 2</u>.
- 2) No dejar ningún 1 sin agrupar. Puede ocurrir que un 1 pertenezca a más de una agrupación. No se pueden coger agrupaciones totalmente contenidas en otras.
- 3) Por cada agrupación de 1's resulta un producto de variables. Cuanto más 1's se agrupen, más sencilla resultará la expresión de esa agrupación.
- 4) En cada agrupación, cada una de las variables puede aparecer en alguno de los siguientes casos:
 - a) Si siempre vale 1 ----> Se pone afirmada.
- b) Si siempre vale 0 ----> Se pone negada.
- c) Si cambia de valor (50% de los casos un valor y el otro 50% otro valor)
 ----> No se pone.
- 5) La expresión de la función booleana será la suma lógica de todos los productos que hayan salido (expresión como Suma de Productos)

Diseñar un sistema de alarma

Sensores disponibles

- 1. V = Ventana (V=0 CERRADA, V=1 ABIERTA)
- 2. P = Puerta (P=0 CERRADA, P=1 ABIERTA)
- 3. C = Calefacción (C=0 APAGADA, C=1 ENCENDIDA)
- 4. A = Aire acondicionado (A=0 APAGADO, A=1 ENCENDIDO)
- 5. I = Alarma de proximidad de intruso (I=0 NO HAY INTRUSO, I=1 SÍ HAY INTRUSO)

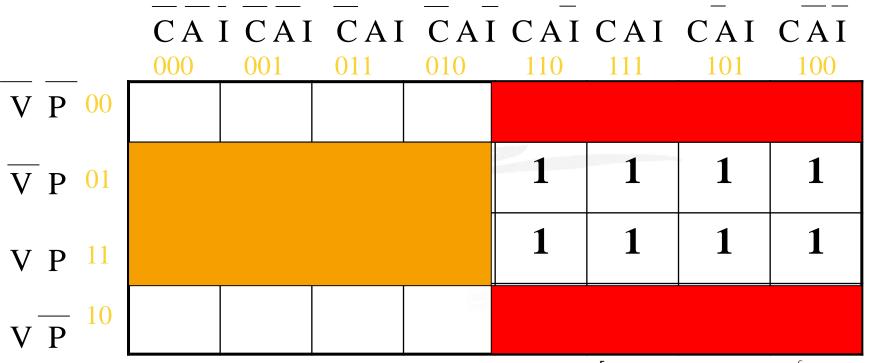
UNIFRANZ FRANZ TRANS

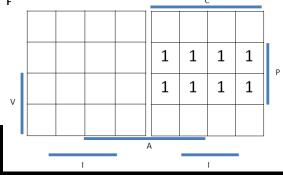
El sistema de alarma debe activarse cuando:

- 1. La puerta está abierta y la calefacción encendida (P=1, C=1)
- 2. La puerta está abierta y el aire acondicionado encendido (P=1, A=1)
- 3. La puerta está abierta con una alarma de proximidad de intruso (P=1, I=1)
- 4. La ventana está abierta y la calefacción encendida. (V=1, C=1)
- 5. La ventana está abierta y el aire acondicionado encendido (V=1, A=1)
- 6. La ventana está abierta con una alarma de proximidad de intruso (V=1, I=1)

Función sistema de alarma F de variables V, P, C, A, I

Rellenando el mapa...(P=1, C=1) F(V, P, C, A, I)=PC+...

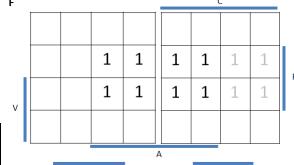




^r Rellenando el

mapa...(P=1, A=1)

	000	001	011	010	110	111	101	100
V P 00								
$\overline{V} P = 01$			1	1	1	1	1	1
V P 11			1	1	1	1	1	1
\overline{VP} 10								



Rellenando el

mapa...(P=1, I=1)

	000	001	011	010	110	111	101	100
V P 00								
$\overline{V} P = 01$		1	1	1	1	1	1	1
V P 11		1	1	1	1	1	1	1
v P 10								

F					(
	1	1	1	1	1	1	1	P
V	1	1	1	1	1	1	1	
				A				1
	1					ı		

Rellenando el mapa...(V=1,

C=1

F(V, P, C, A, I)=PC+PA+PI+VC+...

	000	001	011	010	110	111	101	100
V P 00								
$\overline{V} P = 01$		1	1	1	1	1	1	1
V P 11		1	1	1	1	1	1	1
v P 10					1	1	1	1

F					(
	1	1	1	1	1	1	1	P
v	1	1	1	1	1	1	1	
				1	1	1	1	
				A				,

Rellenando el mapa...(V=1,

A=1 F(V, P, C, A, I)=PC+PA+PI+VC+VA+...

	000	001	011	010	110	111	101	100
V P 00								
$\overline{V} P = 01$		1	1		1	1	1	1
V P 11		1	1	1	1	1	1	1
v P 10			1	1	1	1	1	1

F					(3		
	1	1	1	1	1	1	1	
V	1	1	1	1	1	1	1	•
V		1	1	1	1	1	1	•
				A				,

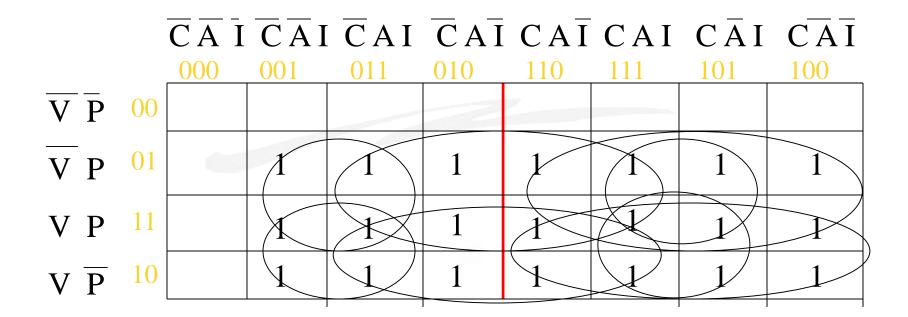
Rellenando el

mapa...(V=1, I=1) F (V, P, C, A, I)=PC+PA+PI+VC+VA+VI

	000	001	011	010	110	111	101	100
V P 00								
$\overline{V} P = 01$		1	1			1	1	1
V P 11		1	1	1	1	1	1	1
V P 10		1	1	1	1	1	1	1

F		С								
		1	1	1	1	1	1	1	P	
v		1	1	1	1	1	1	1		
, [*]		1	1	1	1	1	1	1		
A									,	
		I					ı			

Podemos agrupar así...



$$F = PC + PA + PI + VC + VA + VI$$

·Cuéntos chine passeita pero esta?

O usando los ceros...

					
CAIC	AI CA	ICAI	CAICAI	CAI	CAI

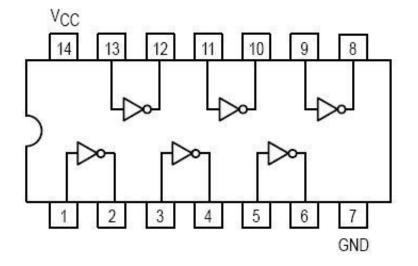
	000	001	011	010	110	111	101	100
$\overline{V} \overline{P} 00$	10	0	0	0	0	0	0	0
$\overline{V} P^{01}$	0	1	1	1	1	1	1	1
V P 11	0	1	1	1	1	1	1	1
\overline{VP}^{10}	0	1	1	1	1	1	1	1

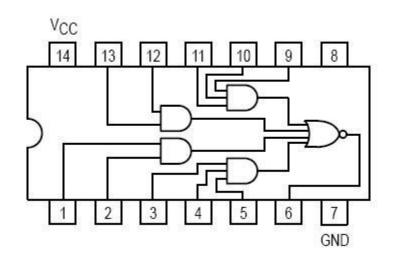
$$\overline{F} = \overline{C} \overline{A} \overline{I} + \overline{V} \overline{P}$$

Sólo dos chips

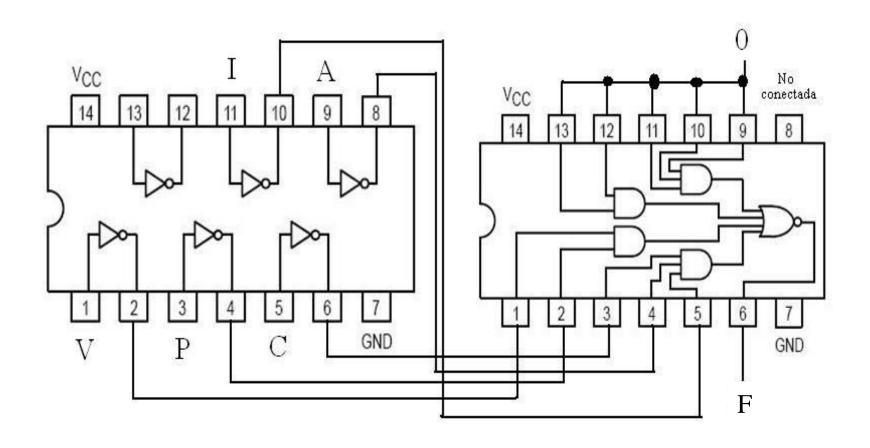
$$F = \overline{\overline{C} \overline{A} \overline{I} + \overline{V} \overline{P}}$$

7404 7454

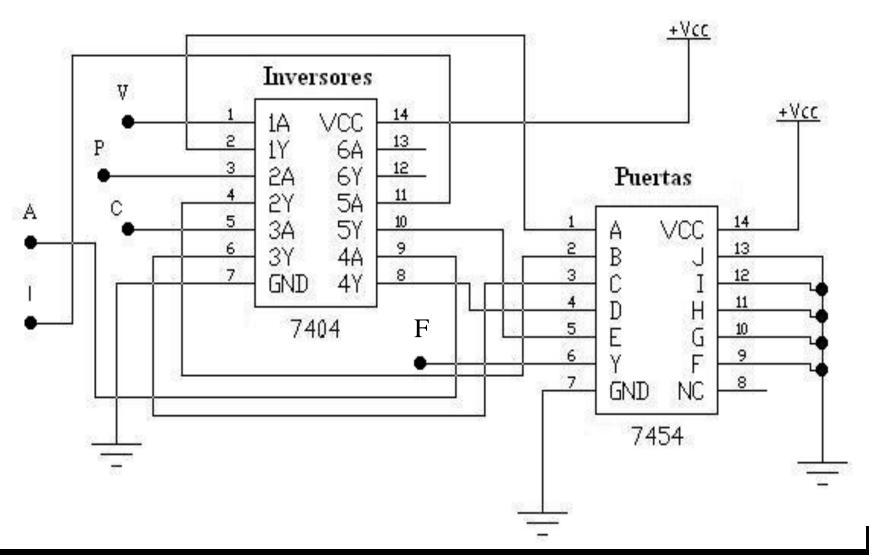




Conexionado físico



Circuito diseñado



- Leyes y propiedades del Algebra de Boole
- Simplificar funciones utilizando el Algebra de Boole
- Analizar circuitos mediante Algebra de Boole y simplificarlos
- Pasar de una tabla de verdad a Suma de Productos y Producto de Sumas
- Utilizar Mapas de Karnaugh para simplificar funciones lógicas

Final del Tema 3