i i B,
T ARL

1‘\‘ L F
ah i -y

1 s T e iy ‘ A o A LR
K i_:i._.] :IIII"'. \u'/{ ‘::J"_J : T " :L
™ |:r f_:' II".II ((j RO o B, . 4

An Introduction to
Problem Solving and Programming

', 1

Inheritance, Polymorphism,
and Interfaces

Chapter 8

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Wal
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ.

Objectives

Describe polymorphism and inheritance in
general

Define interfaces to specify methods
Describe dynamic binding
Define and use derived classes in Java

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Inheritance Basics: Outline

Derived Classes
Overriding Method Definitions
Overriding Versus Overloading

Private Instance Variables and Private
Methods of a Base Class

UML Inheritance Diagrams

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Inheritance Basics

* Download from SavitchSrc link:
* ch08/

" InheritanceDemo. java
" Person. java

" Student. java

" Undergraduate. java

" UndergraduateDemo. java

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Res

Inheritance Basics

Inheritance allows programmer to define a
general class

Later you define a more specific class
= Adds new details to general definition

New class inherits all properties of initial,
general class

View Person. java

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Derived Classes

* Figure 8.1 A class hierarchy

Person

/\

Student

Employee

Undergraduate

Graduate

Faculty

Masters

Doctoral

Nondegree

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Wal
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ

Derived Classes

Class Person used as a base class
= Also called superclass

Now we declare derived class Student
* Also called subclass
* |Inherits methods from the superclass

View Student. java
class Student extends Person

View InheritanceDemo. java

Name: Warren Peace
Student Number: 1234

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Overriding Method Definitions

* Note method writeOutput in class
Student
* Class Person also has method with that name

* Method in subclass with same signature
overrides method from base class

= QOverriding method is the one used for objects
of the derived class
* Overriding method must return same type
of value

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Overriding Versus Overloading

* Do not confuse overriding with overloading

= Overriding takes place in subclass — new
method with same signature

* Overloading

* New method in same class with different
signature

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Private Instance Variables, Methods

* Consider private instance variable in a
base class

* |t is not inherited in subclass

" |t can be manipulated only by public accessor,
modifier methods

* Similarly, private methods in a superclass
not inherited by subclass

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Inheritance Diagrams

* Figure 8.2 A class
hierarchy in
UML notation

Person

/N

Student

An Employee isa
Person and so forth:
hence the arrows point up.

Employee

/ N\ A

Undergraduate

Graduate

Faculty

Staff

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserv

UML Inheritance Diagrams

* Figure 8.3
Some details
of UML class
hierarchy
from

Person

- name: String

+ setName(String newName): void
+ getName(): String

+ writeOutput(): void

+ hasSameName(Person otherPerson)): boolean

A

Student

figure 8.2

studentNumber: int

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

+ + + + +

reset(String newName, int newStudentNumber): void
getStudentNumber(): int

setStudentNumber(int newStudentNumber): void
writeQutput(): void

equals(Student otherStudent): boolean

Programming with Inheritance:
Outline

Constructors in Derived Classes
The this Method — Again
Calling an Overridden Method
Derived Class of a Derived Class
Type Compatibility

The class Object

A Better equals Method
Abstract Classes

Dynamic Binding and Inheritance

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Constructors in Derived Classes

* A derived class does not inherit
constructors from base class

= Constructor in a subclass must invoke
constructor from base class

* Use the reserve word super

public Student(String initialName, 1int initialStudentNumber)

{
(super(initialName);)
HTitialStudentNumber;

}

* Must be first action in the constructor

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The this Method — Again

* Also possible to use the this keyword
= Use to call any constructor in the class

public Person()

{
}

* When used In a constructor, this calls
constructor in same class

" Contrast use of super which invokes
constructor of base class

this("No name yet");

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

e

Calling an Overridden Method

* Reserved word super can also be used to
call method in overridden method

public void writeOutput()
{

/)Display the name

super.writeOutput();
' tudent Number: " + studentNumber);

}

* Calls method by same name in base class

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

A derived class of a derived class
View Undergraduate. java

Has all public members of both

" Person

" Student

This reuses the code In superclasses

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example
f

Student

- studentNumber: int

* Figure 8.4

+ reset(String newName, int newStudentNumber): void
- getStudentNumber(): int
MOre detalls i setStudentNumber(int newStudentNumber): void
+ writeOutput(): void
Of the UML + equals(Student otherStudent): boolean
A
class
Undergraduate

hierarchy

- level: 1int

reset(String newName, int newStudentNumber,
int newlevel): void
getlLevel(): 1int
setLevel (int newLevel): void
writeQutput(): void
equals(Undergraduate otherUndergraduate): boolean

+

+ + + +

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Res

Type Compatibility

* In the class hierarchy
" Each Undergraduate is also a Student
" Each Student is also a Person

* An object of a derived class can serve as
an object of the base class
" Note this is not typecasting

* An object of a class can be referenced by
a variable of an ancestor type

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Type Compatibility

* Be aware of the "is-a" relationship
" AStudent /s a Person

* Another relationship is the "has-a"

= A class can contain (as an instance variable)
an object of another type

" If we specify a date of birth variable for
Person — it "has-a" Date object

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch '
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved y

Type Compatibility

* An object can have more than one type

* In an assignment statement where | ef t
and r 1 ght are object references:

left = right; //okifright“is-a” left
* Example:
Student s = new Student|() ;
Person p = new Person();
p = s; [/l ok—a Student “is-a” Person
s = p; [/lillegal —a Person is not a Student

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch '
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved y

The Class Object

* Java has a class that is the ultimate
ancestor of every class ("Eve class”)

" The class Object

* Thus possible to write a method with
parameter of type Object
= Actual parameter in the call can be object of
any type
* Example: method
println (Object theObject)

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch '
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The Class Object

* Class Object has some methods that every
Java class inherits

* Examples
" Method equals
" Method toString

* Method toString called when
println (theObject) Iinvoked

= Best to define your own toString to handle this

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

A Better equals Method

Download examples:
Parent. java Child. java

Programmer of a class should override
method equals from Object

Use equals method in Student. java as a
model for writing your own.

View equals method in Student. java:
public boolean equals (Object theObject)

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch -
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved _

Polymorphism: Outline

Class interfaces

Java interfaces
Implementing an interface
An interface as a type

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism

* Inheritance allows you to define a base
class and derive classes from the base

class

* Polymorphism allows you to make
changes in the method definition for the
derived classes and have those changes
apply to methods written in the base class

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

An Inheritance as a Type

* A method can substitute one object for
another

= Called polymorphism

* This is made possible by mechanism
" Dynamic binding
* Also known as /ate binding

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding and Inheritance

* When an overridden method invoked

= Action matches method defined in class used
to create object using new

* Not determined by type of variable naming the
object
* Variable of any ancestor class can
reference object of descendant class

= Object always remembers which method
actions to use for each method name

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism

* Consider an array of Person

Person[] people =
Person|[4];

new

* Since student and
Undergraduate are types of
Person, W€ can assign them
to person variables

people[0] = new
Student ("DeBanque, Robin",
8812) ;

people[l] = new
Undergraduate ("Cotty, Manny",
8812, 1);

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Rese

Person

name: String

+ + + +

setName(String newName): void

getName(): S5tring

writeQutput(): void

hasSameName (Person otherPerson)): boolean

A

Student

studentNumber: int

+ + + + +

reset(S5tring newName,int newStudentNumber): void
getStudentNumber(): int

setStudentNumber(int newStudentMumber): woid
writeOQutput(): void

equals({Student otherStudent): boolean

|

Undergraduate

Tevel: int

+

+ + 4+ +

reset(String newName, int newStudentNumber,
int newlevel): wvoid
getlLevel(}: int
setlevel(int newlLevel): wvoid
writeOutput(): void
equals({Undergraduate otherUndergraduate): boolean

Polymorphism

* Given:
Person[] people = new Person[4];

people[0] = new Student ("DeBanque, Robin",
8812) ;

* \When invoking people[0] .writeOutput() ;

* Which writeoutput () IS InVvOked, the one
defined for student Or the one defined for

Person?

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserv

Polymorphism

* Given:
Person[] people = new Person[4];

people[0] = new Student ("DeBanque, Robin",
8812) ;

* \When invoking people[0] .writeOutput() ;

* Which writeoutput () IS InVvOked, the one
defined for student Or the one defined for

Person?

* Answer: The one defined for Student

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism Example

* Download PolymorphismbDemo. java
* Qutput:

Name: Cotty, Manny
Student Number: 4910
Student Level: 1

Name: Kick, Anita
Student Number: 09031
Student Level: 2

Name: DeBangue, Robin
Student Number: 8812

Name: Bugg, June
Student Number: 9901
Student Level: 4

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Wal
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ.

Class Interfaces

* Consider a set of behaviors for pets
" Be named
= Eat
* Respond to a command

* We could specifty method headings for
these behaviors

* These method headings can form a class
interface

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Interfaces

* Now consider different classes that
iImplement this interface

" They will each have the same behaviors
* Nature of the behaviors will be different

* Each of the classes implements the
behaviors/methods differently

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Java Interfaces

A program component that contains
headings for a number of public methods
= Will include comments that describe the
methods

Interface can also define public named
constants

Download all source files from the
SavitchSrc link: ch08/polymorphism

View Measurable. java

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Java Interfaces

* Interface name begins with uppercase
letter

* Stored Iin a file with suffix . java
* Interface does not include
* Declarations of constructors

* |nstance variables
* Method bodies

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Implementing an Interface

* To implement an interface, a class must

* |Include the phrase
implements Interface name

* Define each specified method

* View Rectangle. java:
class Rectangle implements Measurable

* View another class, Circle. java, which
also implements Measurable

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

An Inheritance as a Type

* Possible to write a method that has a parameter
as an interface type

* An interface is a reference type
* Program invokes the method passing it an object
of any class which implements that interface

* SeeDriver.java, Driver2.]ava,
Driver 3. ava
" box has 2 types: Rect angl e and Measur abl e

= di sc has 2 types: G rcl e and Measur abl e

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch '
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Abstract Classes

* Classes can be designed to be a base
class for other classes

= Some methods must be redefined for each
subclass

* These methods should be declared abstract —
a method that has no body

* This makes the class abstract

* You cannot create an object of an abstract
class — thus its role as base class

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Abstract Classes

* Not all methods of an abstract class are
abstract methods
* Abstract class makes it easier to define a

base class

= Specifies the obligation of designer to override
the abstract methods for each subclass

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Abstract Classes

e Cannot have an instance of an abstract
class

= But OK to have a parameter of that type

* Think of an abstract class as something
between an interface (no methods
implemented) and a complete class
definition (all methods implemented)

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding — Quiz

* Download Exanpl es/ Peopl eDenp. | ava
* What gets printed when calling

" einTest (peter) ;
" einTest (hans) ;

" einTest (maria) ;

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding — Quiz

* Download Exanpl es/ Peopl eDenp. | ava
* What gets printed when calling

" einTest (peter) ;
— QObject "Student's name: Peter" is a Student :: class Student

" einTest (hans) ;

" einTest (maria) ;

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

4

Dynamic Binding — Quiz

* Download Exanpl es/ Peopl eDenp. | ava
* What gets printed when calling

" einTest (peter) ;
— QObject "Student's name: Peter" is a Student :: class Student

" einTest (hans) ;
— Object "Person's name: Hans" is a Person :: class Person

" einTest (maria) ;

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding — Quiz

* Download Exanpl es/ Peopl eDenp. | ava
* What gets printed when calling

" einTest (peter) ;
— QObject "Student's name: Peter" is a Student :: class Student

" einTest (hans) ;
— Object "Person's name: Hans" is a Person :: class Person

" einTest (maria) ;
— QObject "Student's name: Maria" is a Person :: class Student

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch)
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

* Derived class obtained from base class by
adding instance variables and methods

* Derived class inherits all public elements of
base class
* Constructor of derived class must first call
a constructor of base class

" If not explicitly called, Java automatically calls
default constructor

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

* Within constructor
®" £this calls constructor of same class
" super invokes constructor of base class

* Method from base class can be overridden
* Must have same signature

* If signature is different, method is
overloaded

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

Overridden method can be called with
preface of super

Private elements of base class cannot be
accessed directly by name in derived class

Object of derived class has type of both
base and derived classes

Legal to assign object of derived class to
variable of any ancestor type

Every class is descendant of class Object

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

* An interface contains
* Headings of public methods
= Definitions of named constants
" No constructors, no private instance variables

* Class which implements an interface must

* Define a body for every interface method
specified
* Interface enables designer to specity
methods for another programmer

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

* Interface is a reference type
= Can be used as variable or parameter type
* Dynamic (late) binding enables objects of
different classes to substitute for one
another
= Called polymorphism

JAVA: An Introduction to Problem Solving & Programming, 6 Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

	Inheritance, Polymorphism, and Interfaces
	Objectives
	Inheritance Basics: Outline
	Inheritance Basics
	Folie 5
	Derived Classes
	Folie 7
	Overriding Method Definitions
	Overriding Versus Overloading
	Private Instance Variables, Methods
	UML Inheritance Diagrams
	Folie 12
	Programming with Inheritance: Outline
	Constructors in Derived Classes
	The this Method – Again
	Calling an Overridden Method
	Programming Example
	Folie 18
	Type Compatibility
	Folie 20
	Folie 21
	The Class Object
	Folie 23
	A Better equals Method
	Polymorphism: Outline
	Polymorphism
	Inheritance as a Type
	Dynamic Binding and Inheritance
	Folie 29
	Folie 30
	Folie 31
	Polymorphism Example
	Class Interfaces
	Folie 34
	Java Interfaces
	Folie 36
	Implementing an Interface
	An Inheritance as a Type
	Abstract Classes
	Folie 40
	Folie 41
	Dynamic Binding - Quiz
	Folie 43
	Folie 44
	Folie 45
	Summary
	Folie 47
	Folie 48
	Folie 49
	Folie 50

