
JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Inheritance, Polymorphism,
and Interfaces

Chapter 8

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Objectives

• Describe polymorphism and inheritance in
general

• Define interfaces to specify methods
• Describe dynamic binding

• Define and use derived classes in Java

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Inheritance Basics: Outline

• Derived Classes
• Overriding Method Definitions
• Overriding Versus Overloading
• Private Instance Variables and Private

Methods of a Base Class

• UML Inheritance Diagrams

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Inheritance Basics

• Download from SavitchSrc link:
• ch08/

 InheritanceDemo.java
 Person.java
 Student.java
 Undergraduate.java
 UndergraduateDemo.java

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Inheritance Basics

• Inheritance allows programmer to define a
general class

• Later you define a more specific class
 Adds new details to general definition

• New class inherits all properties of initial,
general class

• View Person.java

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Derived Classes

• Figure 8.1 A class hierarchy

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Derived Classes

• Class Person used as a base class
 Also called superclass

• Now we declare derived class Student
 Also called subclass
 Inherits methods from the superclass

• View Student.java
class Student extends Person

• View InheritanceDemo.java
Sample
screen
output

Sample
screen
output

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Overriding Method Definitions

• Note method writeOutput in class
Student
 Class Person also has method with that name

• Method in subclass with same signature
overrides method from base class
 Overriding method is the one used for objects

of the derived class

• Overriding method must return same type
of value

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Overriding Versus Overloading

• Do not confuse overriding with overloading
 Overriding takes place in subclass – new

method with same signature

• Overloading
 New method in same class with different

signature

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Private Instance Variables, Methods

• Consider private instance variable in a
base class
 It is not inherited in subclass
 It can be manipulated only by public accessor,

modifier methods

• Similarly, private methods in a superclass
not inherited by subclass

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Inheritance Diagrams

• Figure 8.2 A class
hierarchy in
UML notation

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

UML Inheritance Diagrams

• Figure 8.3
Some details
of UML class
hierarchy
from
figure 8.2

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming with Inheritance:
Outline

• Constructors in Derived Classes

• The this Method – Again

• Calling an Overridden Method

• Derived Class of a Derived Class

• Type Compatibility

• The class Object

• A Better equals Method

• Abstract Classes

• Dynamic Binding and Inheritance

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Constructors in Derived Classes

• A derived class does not inherit
constructors from base class
 Constructor in a subclass must invoke

constructor from base class

• Use the reserve word super

 Must be first action in the constructor

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The this Method – Again

• Also possible to use the this keyword
 Use to call any constructor in the class

• When used in a constructor, this calls
constructor in same class
 Contrast use of super which invokes

constructor of base class

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Calling an Overridden Method

• Reserved word super can also be used to
call method in overridden method

• Calls method by same name in base class

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

• A derived class of a derived class
• View Undergraduate.java
• Has all public members of both

 Person
 Student

• This reuses the code in superclasses

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Programming Example

• Figure 8.4
More details
of the UML
class
hierarchy

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Type Compatibility

• In the class hierarchy
 Each Undergraduate is also a Student
 Each Student is also a Person

• An object of a derived class can serve as
an object of the base class
 Note this is not typecasting

• An object of a class can be referenced by
a variable of an ancestor type

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Type Compatibility

• Be aware of the "is-a" relationship
 A Student is a Person

• Another relationship is the "has-a"
 A class can contain (as an instance variable)

an object of another type
 If we specify a date of birth variable for
Person – it "has-a" Date object

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Type Compatibility

• An object can have more than one type
• In an assignment statement where left

and right are object references:
left = right; // ok if right “is-a” left

• Example:
Student s = new Student();

Person p = new Person();

p = s; // ok – a Student “is-a” Person

s = p; // illegal – a Person is not a Student

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The Class Object

• Java has a class that is the ultimate
ancestor of every class (“Eve class”)
 The class Object

• Thus possible to write a method with
parameter of type Object
 Actual parameter in the call can be object of

any type

• Example: method
println(Object theObject)

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

The Class Object

• Class Object has some methods that every
Java class inherits

• Examples
 Method equals
 Method toString

• Method toString called when
println(theObject) invoked
 Best to define your own toString to handle this

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

A Better equals Method

• Download examples:
Parent.java Child.java

• Programmer of a class should override
method equals from Object

• Use equals method in Student.java as a
model for writing your own.

• View equals method in Student.java:
public boolean equals(Object theObject)

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism: Outline

• Class interfaces

• Java interfaces

• Implementing an interface
• An interface as a type

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism

• Inheritance allows you to define a base
class and derive classes from the base
class

• Polymorphism allows you to make
changes in the method definition for the
derived classes and have those changes
apply to methods written in the base class

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

An Inheritance as a Type

• A method can substitute one object for
another
 Called polymorphism

• This is made possible by mechanism
 Dynamic binding
 Also known as late binding

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding and Inheritance

• When an overridden method invoked
 Action matches method defined in class used

to create object using new
 Not determined by type of variable naming the

object

• Variable of any ancestor class can
reference object of descendant class
 Object always remembers which method

actions to use for each method name

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism
• Consider an array of Person
Person[] people = new

Person[4];

• Since Student and
Undergraduate are types of
Person, we can assign them
to Person variables

people[0] = new
Student("DeBanque, Robin",
8812);

people[1] = new
Undergraduate("Cotty, Manny",
8812, 1);

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism
• Given:
Person[] people = new Person[4];

people[0] = new Student("DeBanque, Robin",
8812);

• When invoking people[0].writeOutput();

• Which writeOutput() is invoked, the one
defined for Student or the one defined for
Person?

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism
• Given:
Person[] people = new Person[4];

people[0] = new Student("DeBanque, Robin",
8812);

• When invoking people[0].writeOutput();

• Which writeOutput() is invoked, the one
defined for Student or the one defined for
Person?

• Answer: The one defined for Student

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Polymorphism Example

• Download PolymorphismDemo.java
• Output:

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Interfaces

• Consider a set of behaviors for pets
 Be named
 Eat
 Respond to a command

• We could specify method headings for
these behaviors

• These method headings can form a class
interface

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Class Interfaces

• Now consider different classes that
implement this interface
 They will each have the same behaviors
 Nature of the behaviors will be different

• Each of the classes implements the
behaviors/methods differently

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Java Interfaces

• A program component that contains
headings for a number of public methods
 Will include comments that describe the

methods

• Interface can also define public named
constants

• Download all source files from the
SavitchSrc link: ch08/polymorphism

• View Measurable.java

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Java Interfaces

• Interface name begins with uppercase
letter

• Stored in a file with suffix .java
• Interface does not include

 Declarations of constructors
 Instance variables
 Method bodies

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Implementing an Interface

• To implement an interface, a class must
 Include the phrase

 implements Interface_name
 Define each specified method

• View Rectangle.java:
class Rectangle implements Measurable

• View another class, Circle.java, which
also implements Measurable

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

An Inheritance as a Type

• Possible to write a method that has a parameter
as an interface type
 An interface is a reference type

• Program invokes the method passing it an object
of any class which implements that interface

• See Driver.java, Driver2.java,
Driver3.java
 box has 2 types: Rectangle and Measurable
 disc has 2 types: Circle and Measurable

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Abstract Classes

• Classes can be designed to be a base
class for other classes
 Some methods must be redefined for each

subclass
 These methods should be declared abstract –

a method that has no body

• This makes the class abstract
• You cannot create an object of an abstract

class – thus its role as base class

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Abstract Classes

• Not all methods of an abstract class are
abstract methods

• Abstract class makes it easier to define a
base class
 Specifies the obligation of designer to override

the abstract methods for each subclass

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Abstract Classes

• Cannot have an instance of an abstract
class
 But OK to have a parameter of that type

• Think of an abstract class as something
between an interface (no methods
implemented) and a complete class
definition (all methods implemented)

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding – Quiz

• Download Examples/PeopleDemo.java
• What gets printed when calling

 einTest(peter);

 einTest(hans);

 einTest(maria);

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding – Quiz

• Download Examples/PeopleDemo.java
• What gets printed when calling

 einTest(peter);
→ Object "Student's name: Peter" is a Student :: class Student

 einTest(hans);

 einTest(maria);

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding – Quiz

• Download Examples/PeopleDemo.java
• What gets printed when calling

 einTest(peter);
→ Object "Student's name: Peter" is a Student :: class Student

 einTest(hans);
→ Object "Person's name: Hans" is a Person :: class Person

 einTest(maria);

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Dynamic Binding – Quiz

• Download Examples/PeopleDemo.java
• What gets printed when calling

 einTest(peter);
→ Object "Student's name: Peter" is a Student :: class Student

 einTest(hans);
→ Object "Person's name: Hans" is a Person :: class Person

 einTest(maria);
→ Object "Student's name: Maria" is a Person :: class Student

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

• Derived class obtained from base class by
adding instance variables and methods
 Derived class inherits all public elements of

base class

• Constructor of derived class must first call
a constructor of base class
 If not explicitly called, Java automatically calls

default constructor

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

• Within constructor
 this calls constructor of same class

 super invokes constructor of base class

• Method from base class can be overridden
 Must have same signature

• If signature is different, method is
overloaded

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

• Overridden method can be called with
preface of super

• Private elements of base class cannot be
accessed directly by name in derived class

• Object of derived class has type of both
base and derived classes

• Legal to assign object of derived class to
variable of any ancestor type

• Every class is descendant of class Object

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

• An interface contains
 Headings of public methods
 Definitions of named constants
 No constructors, no private instance variables

• Class which implements an interface must
 Define a body for every interface method

specified

• Interface enables designer to specify
methods for another programmer

JAVA: An Introduction to Problem Solving & Programming, 6 th Ed. By Walter Savitch
ISBN 0132162709 © 2012 Pearson Education, Inc., Upper Saddle River, NJ. All Rights Reserved

Summary

• Interface is a reference type
 Can be used as variable or parameter type

• Dynamic (late) binding enables objects of
different classes to substitute for one
another
 Called polymorphism

	Inheritance, Polymorphism, and Interfaces
	Objectives
	Inheritance Basics: Outline
	Inheritance Basics
	Folie 5
	Derived Classes
	Folie 7
	Overriding Method Definitions
	Overriding Versus Overloading
	Private Instance Variables, Methods
	UML Inheritance Diagrams
	Folie 12
	Programming with Inheritance: Outline
	Constructors in Derived Classes
	The this Method – Again
	Calling an Overridden Method
	Programming Example
	Folie 18
	Type Compatibility
	Folie 20
	Folie 21
	The Class Object
	Folie 23
	A Better equals Method
	Polymorphism: Outline
	Polymorphism
	Inheritance as a Type
	Dynamic Binding and Inheritance
	Folie 29
	Folie 30
	Folie 31
	Polymorphism Example
	Class Interfaces
	Folie 34
	Java Interfaces
	Folie 36
	Implementing an Interface
	An Inheritance as a Type
	Abstract Classes
	Folie 40
	Folie 41
	Dynamic Binding - Quiz
	Folie 43
	Folie 44
	Folie 45
	Summary
	Folie 47
	Folie 48
	Folie 49
	Folie 50

