Chapter 6.6-7: Work, Energy, Moments and Center of Gravit

6.6 Work
$\mathrm{W}=\mathrm{F} \times \mathrm{d}$

SI Units:
$\mathrm{N}--->\mathrm{M}--->\mathrm{J}$
CGS
Dyne - - - > cm - - - > erg
BE:
$\mathrm{lb}--->\mathrm{ft}--->\mathrm{ft}-\mathrm{lb}$
$W=\int_{a}^{b} F(x) d x$
$\mathrm{F}(\mathrm{b}-\mathrm{a})$

Hookes Law: Think, of captain hook, sailing on a spring $\mathrm{F}(\mathrm{x})=\mathrm{kx}$
$\mathrm{k}=$ spring constant
$\mathrm{x}=$ distance stretched
$\mathrm{F}(\mathrm{x})$ will be in units N , dyne, or lb

Review: 6.1 \# 12, 6.2 \#4, 6.3 \#10
6.1 \#12
$\mathrm{x}^{2}=\mathrm{y}$
$\mathrm{x}=\mathrm{y}-2$
$\mathrm{x}^{2}=\mathrm{x}+2$
$\mathrm{x}^{2}-\mathrm{x}-2=0$

$$
\begin{aligned}
& (\mathrm{x}-2)(\mathrm{x}+1) \\
& \mathrm{x}=2 ; \mathrm{x}=-1
\end{aligned}
$$

$$
\int_{-1}^{2}\left[[x+2]-\left[x^{2}\right]\right] d x
$$

6.2 \#4

What direction are we taking slicing?
the one that forms disks...
Rotate around y - axis

Find Volume
$\pi\left(\mathrm{f}\left(\mathrm{x}^{2}\right)-\mathrm{g}^{2}(\mathrm{x})\right)$
$\int_{\frac{1}{2}}^{2} \pi\left(\left(2^{2}\right)-\left(\frac{1}{y}\right)^{2}\right) d y$
$\int_{\frac{1}{2}}^{2} \pi\left(4-\frac{1}{\mathrm{y}^{2}}\right) \mathrm{dy}=\pi\left(4 \mathrm{y}+\frac{1}{\mathrm{y}}\right)$ evaluated at $\left[2, \frac{1}{2}\right]=\frac{9 \pi}{2}$

Find the Volume using cylindrical shells
$y=2 x-x^{2}=x(2-x)$
$\mathrm{y}=0$
DRAW IT OUT

Surface Area:
$2 \pi r \times h$
$\mathrm{r}=\mathrm{x}$
int $2 \pi \mathrm{x}$ ()

To Determine the Force in these Problems: Use Hooks Law $\mathrm{F}(\mathrm{x})=\mathrm{kx}$

Scientific Method:

1. Observation
2. Hypothesis
3. experiment
4. Measure results aka, Data
5. Accept, or reject
6. Refine

These together are a scientific theory: collection of verified Hypothesese
Imagine we have a petri dish - Bacteria grows to grow and grow Let us drop just 1 bacteria, What happens?

We use this observation to form a hypothesis
$\mathrm{y}(\mathrm{t})=2^{\mathrm{t}}$ just a simple example
276 years ago Calculus was invented
It was all about rates of change
To find this rate of change, we take the derivative $y^{\prime}(\mathrm{t})$ $2=$ rate of change over a point in time but we actually use $\mathrm{y}^{\prime}(\mathrm{t})=\mathrm{k} \times \mathrm{y}(\mathrm{t})$ becoming a differential equation $\int \frac{1}{y(t)} \times y^{\prime}(t) d t=\int k d t$ $e^{\ln (y(t))}=e^{k t+c}$
$y(t)=e^{k t+C}$
$=e^{c} \times e^{k \times}$
$\mathrm{y}(\mathrm{t})=\mathrm{ae}^{\mathrm{kt}}$
$\lim \mathrm{ae}^{\mathrm{kt}}=\infty$
$\mathrm{f}>\inf$

Ex. Imagine we have a graph with $\mathrm{x}-\mathrm{ax}=\mathrm{y}(\mathrm{t})$ and $\mathrm{y}^{\prime}(\mathrm{t})$
$y^{\prime}(\mathrm{t})=\mathrm{y}(\mathrm{t})(1-\mathrm{y}(\mathrm{t}))$
At $\mathrm{x}=1$ we are at $\mathrm{y}=0$ at 1 .
$\int \frac{1}{y(1-y)} y^{\prime} d t=\int 1 d t$
$\int\left(\frac{1-y+y}{y(1-y)}\right)=t+c$
$=\mathrm{t}+\mathrm{C}$
$\int\left(\frac{1}{y}+\frac{1}{1-y}\right) d t=t+C$

$$
\begin{aligned}
& \ln (\mathrm{y})-\ln (1-\mathrm{y})=\mathrm{t}+\mathrm{C} \\
& \ln \left(\frac{\mathrm{y}}{1-\mathrm{y}}\right)=\mathrm{t}+\mathrm{C} \\
& =\mathrm{ae} \mathrm{e}^{\mathrm{kt}}
\end{aligned}
$$

Calculate the limit:

$$
\lim _{\mathrm{t} \text { to } \infty} \frac{\mathrm{ae}^{\mathrm{t}}}{1+\mathrm{ae}^{\mathrm{t}}}=\lim _{\mathrm{t} \text { to } \infty} \frac{\mathrm{ae}^{\mathrm{t}}}{\mathrm{ae}^{\mathrm{t}}}=\lim _{\mathrm{t} \text { to } \infty} 1=1
$$

Common Uses:
Introduce Reactant to a batch, Making drugs
Linguistists - spread of new words
Economics - Spread of trends in the market
Model should match reality, some times it changes, we can alter our rate of change equation to match these changes.
These will be solved through Series of Something....
6.2 Wiley \# 24

Must
h(x)
$\int \pi(\sqrt{x}+2)-\left((x+2)^{2}\right) d x$
$\mathrm{x}=0$
$\mathrm{x}=1$

Shifting a picture:
$\mathrm{g}(\mathrm{x}+2)$: Left
$\mathrm{g}(\mathrm{x}-2)$: right
$\mathrm{g}(\mathrm{x})+2$: up 2
$\mathrm{g}(\mathrm{x})-2$: down 2

