
Chapter 6: Applications of the Definite
Integral in Geometry, Science and
Engineering

Summary: This chapter focuses upon using the methods of evaluating definite
integrals and applying them in various problems. The first problem considered
is that of finding the area between two curves. This extends the idea of finding
the area underneath a curve or the total area between a function and an interval.
The next application is to find the volumes of various objects or solids. Three
basic methods are introduced: the method of slicing, the method of washers (or
disks) and the method of shells. The latter two methods may only be applied in the
case of a volume of revolution when a curve is revolved around a particular axis.
After that, finding the length of a curve or the arc length is discussed. Next the
surface area of a solid of revolution is investigated and then the average value of a
function. Towards the end of the chapter, two physical applications are discussed:
work and force from fluid pressure. At the very end of the chapter, hyperbolic
functions such as sinhx and coshx are defined and studied.

OBJECTIVES: After reading and working through this chapter
you should be able to do the following:

1. Use definite integrals to find the area between two curves (§6.1).

2. Use the method of slicing to find the volume of a solid (§6.2).

3. Use the method of disks/washers to find the volume of a solid of revolution
(§6.2).

4. Use the method of cylindrical shells to find the volume of a solid of revolu-
tion (§6.3).

5. Find the arc length of a plane curve (§6.4).

6. Find the surface area of a solid of revolution (§6.5).

7. Calculate work done by constant and variable forces over a distance (§6.6).
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8. Find the center of gravity and centroid of a two dimensional region or thin
lamina (§6.7).

9. Calculate the force due to fluid pressure on objects submerged in liquid
(§6.8).

10. Learn the definitions and properties of the hyperbolic functions (§6.9).

6.1 Area Between Two Curves

PURPOSE: To use definite integrals to calculate the area be-
tween two curves.

Now thatarea can be described using definite integrals (from the previous chap-area problem
(see §5.1,5.4−5.6) ter), the next step is to use definite integrals to describe the area between two

curves. The process is rather straightforward. In the case of finding the area under
a single function, this can be thought of as finding the areas of many infinites-
mal rectangles between the function and the axis. Now, these rectangles will be
between the two curves. Then the general area function can be stated as

∫ b

a
( f1(x)− f2(x)) dx

where f1(x)> f2(x).

IDEA: Finding the area between two curves is like adding together the areas of
many small rectangles that lie between a top function and a bottom function.

However, if the two functions trade places then their position in the formula needs

to change (i.e., iff2 > f1 then use
∫ b

a
( f2(x)− f1(x)) dx). The function on the bot-

tom is always being subtracted from the one on the top. This may require breaking
the integral into several smaller integrals with different limits of integration and
slightly different integrands.

IDEA: Limits of integration may depend upon where the two functions inter-
sect. Limits are chosen so that the “bottom” function is always being sub-
tracted from the “top.”

Limits of integration will either be given or they must be found. It always must
be determined if the functions intersect. The points of intersection will help to
determine the limits of integration necessary on the integrals as well as helping to
determine which function is the top and which is the bottom.

Another way of thinking of the area between two functions is to define a new
function: h(x) = f1(x)− f2(x). For example,h(x) might represent the height of
one of the small rectangles between the two functions. Then the area between the
two functions can be written as

∫ b

a
|h(x)| dx



The integrand,|h(x)| dx represents the area of one of the infinitesmal rectangles
and the integral is then summing together all of the rectangle areas. The absolute
value ensures that the function on the bottom is being subtracted from the function
on the top so that each rectangle has a positive height.

It is also a simple matter to change these formulas so that they are written with vertical rectangles betweenf1(x)
and f2(x) → dx width

horizontal rectangles betweeng1(y)
andg2(y) → dy width

respect toy instead ofx. The functions used as integrands need to be written as
functions ofy instead ofx and the limits of integration need to be changed toy
values instead ofx values. Otherwise, the process is the same even though visually
it may appear to be different.

Checklist of Key Ideas:

� area between two curves

� calculating area using definite integrals; finding the limits of integration

� area formulas with respect tox and/ory

6.2 Volumes by Slicing; Disks and Washers

PURPOSE: To calculate the volumes of solids oriented along a
particular axis.

Finding the volume of different solids is very closely related to the process of
finding the area under a curve or the area between two curves. In each case, the
idea is to find a way to slice the solid into smaller shapes that can be described
by a definite integral. The slices that are used will all be perpendicular to some
common axis.

IDEA: Each object studied here will be divided up into slices so that each slice
is perpendicular to either the x or y-axis.

The most general is the method ofvolume by slicing. In this case, either the volume by slicing
cross-section of each slice is given or can be found geometrically. Then the area
of the cross-section,A(x), is the integrand.

V =

∫ b

a
A(x) dx

The volume of each slice can be thought of asA(x) dx and then the integral is
simply adding together all of the slices.

Themethod of disksand themethod of washersare more specific applications disk and washers
of the method of slicing. If the solid is the result of revolving a curve about an axis
then the cross-sections will all be circular in shape. ThenA(x) = π [ f1(x)]2 (in
the method of disks) orA(x) = π

(

[ f1(x)]2− [ f2(x)]2
)

(in the method of washers).
Here the function values are the radius of each of the circles (i.e., the distance to
thex-axis).



IDEA: The method of disks is a specific case of the method of washers where
the inner function is zero, i.e., f2(x) = 0.

The reader may notice that the method of disks is just a specificcase of the method
of washers where thef2(x) = 0. Also, both the disk and washer methods are di-
rectly related to the area problem from the previous section. Ifh1(x) = π [ f1(x)]2

andh2(x) = π [ f2(x)]2 then the method of washers is just the total area between
the functionsh1 andh2.

All of the above descriptions are given in terms of revolving a function about the
x-axis. If a function isrevolving about the y-axis then the integrals need to berevolving abouty-axis
written with respect toy and the functions need to be functions ofy. Also the
limits need to be written as values ofy.

Here is a general summary of the method of washers (and disks iff2 or g2 is zero):

Revolving aroundx-axis:

V =

∫ x=b

x=a
π
(

[ f1(x)]
2− [ f2(x)]

2) dx if f1 ≥ f2 ≥ 0

Revolving around the liney = k (parallel to thex-axis):

V =

∫ x=b

x=a
π
(

[ f1(x)− k]2− [ f2(x)− k]2
)

dx if f1 ≥ f2 ≥ k

V =

∫ x=b

x=a
π
(

[k− f2(x)]
2− [k− f1(x)]

2) dx if k ≥ f1 ≥ f2

Revolving aroundy-axis:

V =

∫ y=d

y=c
π
(

[g1(y)]
2− [g2(y)]

2) dy if g1 ≥ g2 ≥ 0

Revolving around the linex = k (parallel toy-axis):

V =

∫ y=d

y=c
π
(

[g1(y)− k]2− [g2(y)− k]2
)

dy if g1 ≥ g2 ≥ k

V =

∫ y=d

y=c
π
(

[k− g2(y)]
2− [k− g1(y)]

2) dy if k ≥ g1 ≥ g2

Checklist of Key Ideas:

� volume by slicing; general volume formulas (with respect tox and/ory)

� volume of a right cylinder; volume of a disk

� axis perpendicular to disks

� solids of revolution

� method of disks; method of washers



6.3 Volumes by Cylindrical Shells

PURPOSE: To use integrals to compute the volume of a solid
using cylindrical shells.

The method of disks and shells are designed specifically for the situation where
a solid is obtained by a revolution of a curve about a particular axis (usually the
x- or y-axis or some line that is parallel to one of them). Themethod of shells
is based upon the volume of a right circular cylinder. The volume of one shell is method of shells
given by

shell volume= 2π(x− a) f (x) dx

where the shell has a center along the line atx = a. Then the volume formula will
be given by

V =
∫ x=b

x=a
2π(x− a) f (x) dx

Notice that in this example the solid is revolved about a linex = a which is parallel
to they-axis.

IDEA: Washers and shells require integration with respect to the opposite vari-
able. In some cases this may make one method easier than the other.

Using themethod of washersin this case would have used integration with re- washers vs. shells
spect toy. Because of this difference, it may be easier to apply themethod of
shellsthan the method of washers in some cases. Another difference between the
method of washers (or disks) and shells is that the method of washers requires that
the function be squared while the method of shells requires that the function be
multiplied by a distance (usuallyx, for example).

Checklist of Key Ideas:

� volume of a cylindrical shell; difference between shells and disks

� method of cylindrical shells

� volume formula about thex- or y-axis

� units of the integral

6.4 Length of a Plane Curve

PURPOSE: To use integrals to find the length of a piece of a
curve.

There is only one idea that is introduced in this section: how to find the length of
a piece of a curve. The formula that is used is straightforward and requires that



the derivative of the function be obtained. Often the integral that results cannot be
evaluated without special means such as anumerical method or CAS. The factsome integrals may require

numerical methods (see §5.4,7.7) or
CAS (see §7.6)

that the derivative is required indicates when this formula may be applied. The
function in question must have a derivative over the entire length of the curve or
else the formula may return faulty values.

IDEA: To calculate arc length requires that the appropriate derivatives of the
curve can be calculated.

Three formulas are given for finding the length of a curve. One iswith respect toThree arc length formulas

1. with respect tox, y = f (x)

2. with respect toy, x = g(y)

3. parametrically (see also
§10.1)

x and one iswith respect toy. Arc length can also be calculatedparametrically .
This will also be discussed later in Section 10.1.

∫ b

a

√

1+(dy/dx)2 dx with respect tox

∫ d

c

√

1+(dx/dy)2 dy with respect tox

∫ b

a

√

(dx/dt)2+(dy/dt)2 dt parametrically

In some cases, writing the length with a different integral can be the difference
between getting an exact answer and having to evaluate the definite integral nu-
merically.

Checklist of Key Ideas:

� arc length problem

� smooth curves/functions

� formula for arc length (with respect tox and/ory)

� arc length formula for curves defined parametrically

� units of the integral

6.5 Area of a Surface of Revolution

PURPOSE: To use integrals to compute the area of a surface of
revolution.

After discussing solids of revolution and the length of an arc, the area of a surface
of revolution can be discussed. There is only one formula that is introduced in this
section: finding the surface area of a solid of revolution.

The area formula is based upon the surface area of afrustum of slant heightfrustum
slant height l: area= π(r1 + r2)l. The slant height of the frustum can be found using the

incremental arc length ofl =
√

1+[ f ′(x)]2 dx.



IDEA: The slant height of the frustum is found using the arc length ideas from
the previous section. This means that the appropriate derivative needs to
exist.

The radius of the top and bottom of the frustum are approximately the same and
so the area becomes

area= π(2 f (x))
√

1+[ f ′(x)]2 dx

Then summing these areas, the surface area can be written as

A =

∫ x=b

x=a
2π f (x)

√

1+[ f ′(x)]2 dx

Often this formula cannot be evaluated directly or will needu-substitution. numerical methods (see §5.4,7.7)
CAS (see §7.6)

Checklist of Key Ideas:

� surface area problem

� surface of revolution

� formula for finding area of a surface of revolution

6.6 Work

PURPOSE: To use integrals to compute the work done by a
force.

Theunits of work are energy and work is done by applying a force over a distance. units of work
The units of energy (and work) can be found by multiplying together the units of
force and the units of distance.

IDEA: Three types of force:

1. constant force

2. variable force

3. many cases of constant force

In this section,three types of workare considered: with a constant force, with a
variable force, and adding together many cases where the force is constant. When
the force is constant, then the work done is simply the product of the force,F, constant force
and the distance,d, over which the force is applied.

W = F ·d

When theforce is variable, then the work done is the integral of the force,F(x): variable force



work=
∫ x=b

x=a
F(x) dx

Notice that the units ofF(x) dx will be force times length which should equal
energy.

IDEA: Two special types of work:

1. work done by springs

2. work of pumping a liquid

Two special types of work are considered in this section: workdone on a spring
and work done pumping liquid. Forsprings, the force that is applied is a variablework and springs
force that is proportional to the amount that the spring is compressed or stretched,
F(x) = kx, wherek is the spring constant.

Forpumping liquids, the total work can be thought of as many separate instancespumping liquids
of work being done with a constant force that are then added together. This is
very similar to the volume by slicing method introduced earlier in this chapter
(see §6.2). A volume of liquid can be divided into thin layers of liquid that have a
cross-sectional area ofA(x) and a thickness ofdx so that each layer has a volume
of A(x) dx. Then multiplying the volume of each layer by its weight density will
give the weight of the layer. The process of pumping is then tolift each layer oflifting=applying a force
liquid a certain distance.

IDEA: Thinking of the liquid as many different layers is similar to finding the
volume of an object by slicing. In this problem, the slices or layers are also
being moved some distance. So two key ideas are

1. the size of each “layer” of liquid

2. how far the “layer” is being moved

For both pumping and spring problems, care should be taken when choosing what
thex-axis represents. In spring problems,x = 0 represents when the spring is at its
natural length. Thenx = 1 would represent when the spring is stretched beyond,
or compressed from, its natural length by one unit.

IDEA: Picking an x-axis can usually be done in more than one way. The
important thing is to be consistent throughout the problem.

In pumping problems, one convention (as used by this book) is to have the positive
x direction to be in the downward direction. Wherex = 0 is located is arbitrary
and is often left up to the reader. Usuallyx = 0 is chosen to be in a position that
makes other pieces of the integrand to be relatively simple expressions. However
the pumping is done, the lower limit of integration should be less than the upper
limit of integration and the distance that each layer of liquid is pumped should be
positive. The result should be a positive amount of work done. Also, the limits of
integration are chosen based upon where the liquid is located on thex-axis, not on
where the liquid is being pumped to.



IDEA: Be careful with the distance and the limits of integration. The overall
work in lifting liquid should be a positive amount of energy.

Lastly,work is equivalent to the change in kinetic energyof an object. This is work is change in
kinetic energyshown by the equation

W =
1
2

mv2
f −

1
2

mv2
i

wherev f is the final velocity of an object andvi is the initial velocity of an ob-
ject. When calculating work based upon change in velocity, no integrals have to
be evaluated. The work may be calculated by evaluating the above expression
directly.

Checklist of Key Ideas:

� work-energy relationship; kinetic energy

� work of a constant force over a distance

� work of a variable force over a distance

� springs and spring constants

� pumping liquid

6.7 Moments, Centers of Gravity, and Centroids

PURPOSE: To find the center of gravity of an inhomogeneous
lamina or the centroid of a homogeneous lamina.

This section discusses how to find the center of gravity of a thin, two-dimensional
region called alamina. Since this region is two-dimensional we will describe the lamina

inhomogeneous
homogeneous

region using equations in thexy-plane. The lamina may have some non-constant
density function,δ (x), in which case the lamina is said to beinhomogeneous.
Otherwise the lamina is calledhomogeneous. The center of gravity is the point
in the region upon which the region can be balanced. In other words, the force center of gravity

centroiddue to gravity on the region can be seen as a single force that acts on the region
through its center of gravity. When a lamina is homogeneous, the center of gravity
is called the centroid.

IDEA: The integrals for M, Mx and My are required to calculate the center of
gravity or centroid.

x̄ =
My

M
and ȳ =

Mx

M

Three integral formulas are necessary to calculate the center of gravity of a lamina:
themoment about thex-axis (Mx), themoment about they-axis (My), and the M, mass

Mx, moment aboutx-axis
My, moment abouty-axis



mass(M) of the region. The integrals required to calculate these are very similar
to integrals used in other applications in this chapter.

IDEA: Setting up the integral for mass, M, of a laminar region R is very similar
to setting up the integral for finding the area of the region.

For example, finding the mass of a region is very similar to finding the area of a
region. Finding the moments about thex-axis andy-axis are very similar to the
integrals that arise when finding the volume of a solid of revolution.

IDEA: Setting up the integrals for Mx and My are very similar to the integrals
that are used to find volumes for solids of revolution about the x-axis and y-axis
respectively.

Suppose that a regionR is bounded by the curvesy = f (x) at the bottom,y = g(x)
at the top, andx = a andx = b at the left and right. When integrating with respect

to x, the area of this region is given by the following integral
∫ b

a
(g(x)− f (x)) dx.

Calculating the mass simply inserts the density,δ , into this integral:

M =

∫ b

a
δ · (g(x)− f (x)) dx.

Also, the moment about thex-axis,

Mx =
1
2

∫ b

a
δ · (g(x)2− f (x)2) dx,

looks remarkably similar to integration the washer method when it is used to find
the volume of the solid of revolution about thex-axis. Likewise, the moment about
they-axis,

My =

∫ b

a
x ·δ · (g(x)− f (x)) dx

looks much like the volume when revolving about they-axis if the shell method
is used. If integration with respect toy is used, thenMx will look like the shell
method being used around thex-axis andMy will resemble the washer method
being used around they-axis.

The centroid is found in essentially the same way as the center of gravity. Therecentroids depends only
upon the shape of lamina will be no real difference in the calculation other than the density of the region

will be constant. This will cause the density to divide out of the calculation of ¯x
and ȳ. Since the centroid is then independent of the density, the location of the
centroid is considered to be a geometric property of the region. That is, only the
shape of the region has an impact upon the location of the centroid.

IDEA: The Theorem of Pappus allows the centroid of a region to be used as a
convenient tool for finding the volume of a solid of revolution.

volume = (circumference travelled by centroid)× (area of region)

A useful application of the centroid is found in calculating the volume of a solid of
revolution.The Theorem of Pappusessentially says that the volume is equal toTheorem of Pappus

solids of revolution



the area of the region times the distance that the centroid travels when the region
is revolved. To find the distance that the centroid travels, imagine its path as a
circle. The distance it is revolved will be equal to the circumference of the circle.
The radius of this circle is the straight distance from the centroid to the line being
revolved around. Any line can be considered, not just vertical and horizontal lines.

Checklist of Key Ideas:

� inhomogeneous lamina

� homogeneous lamina

� moments about thex-axis andy-axis

� center of gravity

� centroid

� mass of a lamina

� Theorem of Pappus

6.8 Fluid Pressure and Force

PURPOSE: To use integrals to calculate the total force that is
applied by a fluid over an area.

The idea presented in this section is force applied over an area and finding the
total force that is applied by a fluid on a submerged object or surface. As in the
previous section, theunits that are being used can help to straighten out how to units
write the integrals involved.

The basic formula being used is the relationship between force,F , pressure,P,
and areaA.

F = PA or P =
F
A

Thus the units of pressure,P, are force per area. In the SI system this is typically
given as Pascals or Pa. In the BE system, this is usually given as pounds per square
inch or PSI.

The main problem considered here is how to calculate the force on a submerged
surface whether it is horizontal, vertical or inclined at some angle (see the exer-
cises). The direction of the force on the surface is known to be perpendicular to
the surface in question.

If it is a horizontal surface then the force is just equal to the pressure times the horizontal surface
area. The pressure is shown to be the weight density,ρ , times the distance,h, at
which the surface is submerged. Then the force is given as follows.

F = ρhA



If the surface is verticalthen the force is calculated using an integral. Thex-axisvertical surface
is taken to be positive in the downward direction.x = 0 does not necessarily need
to be at the surface of the liquid. The submerged surface is divided into horizontal
strips which have a thickness ofdx and a width given byw(x) giving each hori-
zontal strip an area ofw(x) dx. Each strip has a depth ofh(x) below the surface
of the liquid. Then each strip will experience a force ofρ h(x)w(x) dx. This is
integrated with limits of integration based upon where the submerged surface is
on thex-axis.

∫ x=b

x=a
ρh(x)w(x) dx

Herex = a is at the top of the surface andx = b is at the bottom of the submerged
surface. As a check, the units ofρh(x)w(x) dx should be units of force.

Checklist of Key Ideas:

� definition of pressure

� fluid density; mass/weight density

� fluid pressure on horizontal or vertical surface

� formula for finding fluid force

� units of the integral

6.9 Hyperbolic Functions and Hanging Cables

PURPOSE: To define the various hyperbolic trigonometric func-
tions and to discuss their properties.

Hyperbolic functions are introduced and defined in this section. These functionssinhu =
eu − e−u

2

coshu =
eu + e−u

2

tanhu =
sinhu
coshu

are not really an application of integrals but rather are a new group of functions
which are defined as combinations of exponential functions. Everything that is
shown in this section can be found by remembering the definitions of each func-

tion. For example, since sinhx =
ex − e−x

2
then its derivatives and antiderivatives

can be found by simply knowing this information forex ande−x. Once this type
of information is known for sinhx and coshx, then similar results can be obtained

for tanhx =
sinhx
coshx

.

Other important features can be remembered by thinking of sinhx and coshx in
pieces:

sinhx =
ex

2
− e−x

2

coshx =
ex

2
+

e−x

2



Recall thatex → 0 asx → −∞ ande−x → 0 asx → ∞. Then sinhx and coshx
become asymptotically close toex/2 asx → ∞. On the other hand, sinhx becomes
asymptotically close to−e−x/2 asx → −∞ and coshx becomes asymptotically
close toe−x/2 asx → −∞. Similar properties of tanhx and the other hyperbolic
functions by either defining them in terms ofex ande−x or in terms of sinhx and
coshx.

IDEA: All the definitions can be written in terms of sinhx and coshx.

For example,

tanhx =
sinhx
coshx

sechx =
1

coshx

cothx =
coshx
sinhx

cschx =
1

sinhx

IDEA: Make notecards with the various definitions and properties of the hy-
perbolic functions to help remember them.

If the reader is not familiar with the material in this section, then it is suggested
that the reader make a few notecards with any new information and have them
handy as they attempt the exercises at the end of the section.

Checklist of Key Ideas:

� ex as a sum of even and odd functions

� hyperbolic functions

� curvilinear asymptotes

� catenary; hanging cables

� hyperbolic identities

� hyperbolic inverses and derivatives

� logarithmic forms of inverse hyperbolic functions



Chapter 6 Sample Tests 

Section 6.1

1. Find the area of the region enclosed by the curvesy = x2 and
y =−x by integrating with respect tox.

(a) 1/6

(b) 1

(c) 1/4

(d) 1/16

2. Answer true or false.
∫ 2
0 (8x−x3) dx =

∫ 2
0 (y− 3

√
y) dy

3. Find the area enclosed by the curvesy=−x5, y=− 3
√

x, x= 0
andx = 1/2.

(a) 0.295

(b) 0.315

(c) 0.273

(d) 0.279

4. Find the area enclosed by the curvesy = sin(3x), y = 2x,
x = 0 andx = π.

(a) 4.27

(b) 2.38

(c) 9.32

(d) 10.68

5. Find the area between the curvesy = |x−2|, y =
x
2
+2.

(a) 3.0240

(b) 12.000

(c) 3.0251

(d) 3.0262

6. Find the area between the curvesx = 2|y|, x = −2y+4 and
y = 0.

(a) 1

(b) 2

(c) 0.5

(d) 0.3

7. Use a graphing utility to find the area of the region enclosed
by the curvesy = x3−2x2+5x+2, y = 0, x = 0 andx = 2.

(a) 34/3

(b) 37/3

(c) 38/3

(d) 40/3

8. Use a graphing utility to find the area enclosed by the curves
y =−x5, y = x2, x = 0 andx = 3.

(a) 130.5

(b) 120.75

(c) 140.5

(d) 125.25

9. Use a graphing utility to find the area enclosed by the curves
x = 2y4, x =

√
4y.

(a) 2

(b) 1

(c) 0.76

(d) 0.93

10. Answer true or false. The curvesy = x2+5 andy = 6x inter-
sect atx = 1 andx = 2.

11. Answer true or false. The curvesx = y2+3 andx = 11y in-
tersect aty = 3 andy = 6.

12. Answer true or false. The curvesy = cos(x)−1 andy = x2

intersect atx = 0 andx = π.

13. Answer true or false. The curvesy= 2sin(πx/2) andy= 2x3

intersect atx = 0 andx = 1.

14. Find a vertical linex = k that divides the area enclosed by
y =−√

x, y = 0 andx = 4 into two equal areas.

(a) k = 4

(b) k = 42/3

(c) k = 43/2

(d) k = 2

15. Approximate the area of the region that lies below
y = 3cos(x/3) and abovey = 0.3x, where 0≤ x ≤ π.

(a) 6.314

(b) 2.442

(c) 0.558

(d) 1.118



Section 6.2

1. Use the method of disks to find the volume of the solid that re-
sults by revolving the region enclosed by the curvesy =−x3,
x=−4, x = 0 andy = 0 about thex-axis (round to the nearest
whole number).

(a) 7,353

(b) 3,677

(c) 14,706

(d) 46,201

2. Use the method of disks to find the volume of the solid
that results by revolving the region enclosed by the curves
y =

√
cosx, x = 0, x = π/2 andy = 0 about thex-axis.

(a) π/4

(b) 2π
(c) π/2

(d) π

3. Use the method of disks to find the volume of the solid
that results by revolving the region enclosed by the curves
y = x2 − 4, y = 0, andx = 0 about they-axis (round to the
nearest whole number).

(a) 17

(b) 54

(c) 64

(d) 201

4. Use the method of disks to find the volume of the solid
that results by revolving the region enclosed by the curves
y = x+ ex, y = 0, x = 0 andx = 1 about thex-axis. The ap-
proximate volume is

(a) 5.53

(b) 11.05

(c) 17.37

(d) 34.73

5. Answer true or false. The volume of the solid that results
when the region enclosed by the curvesy = x10, y = 0, x = 0

andx = 2 is revolved about thex-axis is given by
∫ 2

0
πx20 dx.

6. Answer true or false. The volume of the solid that results
when the region enclosed by the curvesy = 3

√
x, y = 0,

x = 0 and x = 3 is revolved about thex-axis is given by
(

∫ 3

0
π 3
√

x dx

)2

.

7. Use the method of disks to find the volume of the solid that re-
sults by revolving the region enclosed by the curvesy =−x5,
x = 0, y =−1 about they-axis. The approximate volume is

(a) 0.83

(b) 2.62

(c) 8.23

(d) 2.24

8. Use the method of disks to find the volume of the solid
that results by revolving the region enclosed by the curves
x =

√
4y+16, x = 0, andy = −1 about they-axis. The ap-

proximate volume is

(a) 56.5

(b) 48.2

(c) 15.3

(d) 18.0

9. Use the method of disks to find the volume of the solid that
results by revolving the region enclosed by the curvesx = y2,
x =−y+6 about they-axis. The approximate volume is

(a) 20.83

(b) 65.45

(c) 523.60

(d) 1,028.08

10. Answer true or false. The volume of the solid that results
when the region enclosed by the curvesx = y6 andx = y8 is

revolved about they-axis is given by
∫ 1

0
(y6−y8)2 dy.

11. Find the volume of the solid whose base is enclosed by the
circle (x−2)2+(y+3)2 = 9 and whose cross sections taken
perpendicular to the base are semicircles. The approximate
volume is

(a) 113.10

(b) 355.31

(c) 56.5

(d) 117.65

12. Answer true or false A right-circular cylinder of radius 8 cm
contains a hollow sphere of radius 4 cm. If the cylinder is
filled to a height ofh cm with water and the sphere floats so
that its highest point is 1 cm above the water level, there is
16πh−8π/3 cm3 of water in the cylinder.

13. Use the method of disks to find the volume of the solid
that results by revolving the region enclosed by the curves
y = cos6 x, x = 2π, andx = 5π/2 about thex-axis. The ap-
proximate volume is

(a) 0.35

(b) 1.11

(c) 0.49

(d) 0.76



14. Use the method of washers to find the volume of the solid
that results by revolving the region enclosed by the curves
y = −e2x, x = 2, andy = −1 about thex-axis (round to the
nearest whole number).

(a) 574,698

(b) 2,334

(c) 693

(d) 2,178

15. Answer true or false. The volume of the solid that results
when the region enclosed by the curvesy = x2 and x = y
is revolved aboutx = 1 is V = 0.133 (rounded to 3 decimal
places).

Section 6.3

1. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = x2, x = −2, x = −1 andy = 0 is
revolved about they-axis.

(a)
15π2

4

(b)
15π

4

(c)
15π

8

(d)
15π

2

2. Use cylindrical shells to find the volume of the solid when
the region enclosed byy =

√−x, x = 0, x = −1 andy = 0 is
revolved about they-axis.

(a) 0.4π

(b) 0.8π

(c) 0.2π

(d) 0.2π2

3. Use cylindrical shells to find the volume of the solid when the

region enclosed byy =
3
x2 , x = 1, x = 2 andy = 0 is revolved

about they-axis. The approximate volume is

(a) 2.08π

(b) 4.16π

(c) 2.08π2

(d) 4.16π2

4. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = −x−3, x = 1, x = 2 andy = 0 is
revolved about they-axis.

(a) π2

(b) 0.5π
(c) π
(d) 0.05π2

5. Use cylindrical shells to find the volume of the solid when the
region enclosed byy =−sin(−x2), y = 0, x = 0 andx = 1 is
revolved about they-axis. The approximate volume is

(a) 0.560π
(b) 0.520π
(c) 0.460π
(d) 0.500π

6. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = 2ex2

, x = 1, x = 2 andy = 0 is
revolved about they-axis. The approximate volume is

(a) 103.8π
(b) 12.970π
(c) 6.485π
(d) 25.940π

7. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = 4−x, y = x, andy = 0 is revolved
about they-axis.

(a) 80π
(b) 32π
(c) 16π
(d) 8π

8. Use cylindrical shells to find the volume of the solid when the
region enclosed byy = 2x2−6x andy = 0 is revolved about
they-axis.

(a)
27π

2
(b) 27π

(c)
27π

8

(d)
27π

4
9. Use cylindrical shells to find the volume of the solid when

the region enclosed byx=−y2, x = 0 andy=−2 is revolved
about thex-axis.

(a) 4

(b) 4π
(c) 8

(d) 8π

10. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = 3

√
8x, x = 1 andy = 0 is revolved

about thex-axis.



(a)
19π
20

(b)
12π

5

(c)
10π

3

(d)
8π
5

11. Use cylindrical shells to find the volume of the solid when the
region enclosed byxy = 7 andx+ y = −6 is revolved about
thex-axis. The approximate volume is

(a) 1.32π

(b) 16.4π

(c) 7.54π

(d) 65.6π

12. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = −x2, x = 1, x = 2 andy = 0 is
revolved about the linex = 1.

(a)
17π

6

(b)
15π

2

(c)
5π
6

(d)
14π

3

13. Use cylindrical shells to find the volume of the solid when
the region enclosed byy = x2, x = 0, x = −2 andy = 0 is
revolved about the linex = 1.

(a) 8π

(b)
40π

3

(c)
8π
3

(d)
16π

3

14. Answer true or false. The volume resulting from revolving
the region enclosed by the semicircley =

√
16−x2 about the

x-axis is
32π

3
.

Section 6.4

1. Find the arc length of the curvey = −2x3/2 from x = 0 to
x = 3. The approximate arc length is

(a) 10.9

(b) 10.9π

(c) 6.8

(d) 6.8π

2. Find the arc length of the curvey =
1
2
(x2+3)3/2 from x = 0

to x = 2. The approximate arc length is

(a) 7.17

(b) 14.34

(c) 28.68

(d) 51.96

3. Answer true or false. The arc length of the curve
y = (x−2)5/2 from x = 0 to x = 5 is given by
∫ 5

0

√

1+(x−2)5 dx.

4. Answer true or false. The arc length of the curvey = ex +e2x

from x = 0 to x = 4 is given by
∫ 4

0

√

1+(e3x)2 dx.

5. The arc length of the curvex =
1
6
(y2+4)3/2 from y =−1 to

y = 0 is

(a) 5/6

(b) 7/6

(c) 5/3

(d) 4

6. Find the arc length of the parametric curvex =
3
2

t2 andy= t3

for 0≤ t ≤ 2. The approximate arc length is

(a) 3.328

(b) 3.324

(c) 10.180

(d) 3.348

7. Find the arc length of the parametric curvex =−cost and
y = sint for 0≤ t ≤ π/2.

(a) π/2

(b) π2/4

(c)
√

π
(d) π

8. Answer true or false. The arc length of the parametric curve

x = 3et andy = et for 0≤ t ≤ 3 is given by
∫ 3

0

√
4et dt.

9. The arc length of the parametric curvex =−cos(2t),
y = sin(2t) for 0≤ t ≤ 1 is

(a) 2

(b)
√

2

(c) π
(d) 2π



10. Answer true or false. The arc length of the parametric curve

x = e3t andy = e3t for 0≤ t ≤ 2 is given by
∫ 2

0

√
3et dt.

11. Use a CAS or a calculator with integration capabilities to ap-
proximate the arc length of the curvey = sin(−x) from x = 0
to x = π/2.

(a) 1.43

(b) 1.74

(c) 1.86

(d) 1.91

12. Use a CAS or a calculator with integration capabilities to
approximate the arc length of the curvex = sin(−3y) from
y = 0 to y = π.

(a) 2.042

(b) 6.987

(c) 2.051

(d) 2.916

13. Use a CAS or a calculator with integration capabilities to ap-
proximate the arc length of the curvey =−xex from x = 0 to
x = 2.

(a) 21.02

(b) 4.17

(c) 15.04

(d) 19.71

14. Answer true or false. The arc length ofy = xcosx from x = 0
to x = π can be approximated by a CAS or a calculator with
integration capabilities to be 4.698.

Section 6.5

1. Find the area of the surface generated by revolvingy = −2x,
0≤ x ≤ 1 about thex-axis. The approximate surface area is

(a) 4.47

(b) 14.05

(c) 28.10

(d) 88.28

2. Find the area of the surface generated by revolving
y =

√
1+x, −1≤ x ≤ 0 about thex-axis. The approximate

surface area is

(a) 4.47

(b) 28.07

(c) 5.33

(d) 7.02

3. Find the area of the surface generated by revolving
x =

√
y+1, 0≤ y ≤ 1 about they-axis. The approximate sur-

face area is

(a) 67.88

(b) 3.44

(c) 8.28

(d) 21.60

4. Answer true or false. The area of the surface generated by
revolving x =

√
3y, 1≤ y ≤ 5 about they-axis is given by

∫ 5

1
2πy

(

1+
3

4
√

3x

)

dy.

5. Answer true or false. The area of the surface generated by
revolving x = ey+2, 0≤ y ≤ 1 about they-axis is given by

2πe2
∫ 1

0

√

1+e2y+4 dy.

6. Answer true or false. the area of the surface generated by
revolving x = siny, 0≤ y ≤ π about they-axis is given by
∫ π

0
2πy
√

1−cos2x dx.

7. Use a CAS or a scientific calculator with numerical integra-
tion capabilities to approximate the area of the surface gener-
ated by revolving the curvey = ex+1, −1≤ x ≤−0.5 about
thex-axis.

(a) 18.54

(b) 9.27

(c) 1.48

(d) 6.78

8. Use a CAS or a scientific calculator with numerical integra-
tion capabilities to approximate the area of the surface gen-
erated by revolving the curvexy = 1, 1≤ y ≤ 2 about thex-
axis.

(a) 5.016

(b) 5.394

(c) 7.678

(d) 10.502

9. Answer true or false. A CAS or a calculator with numer-
ical integration capabilities can be used to approximate the
area of the surface generated by revolving the curvey= cosx,
0≤ x ≤ π/2 about thex-axis to be 1.

10. Answer true or false. A CAS or a calculator with numer-
ical integration capabilities can be used to approximate the
area of the surface generated by revolving the curvey = sinx,
0≤ x ≤ π/2 about thex-axis to be 1.

11. Answer true or false. A CAS or a calculator with numer-
ical integration capabilities can be used to approximate the
area of the surface generated by revolving the curvex= cosy,
0≤ y ≤ π/2 about they-axis to be 8.08.



12. Answer true or false. The area of the surface generated by
revolving the parametric curvex = t2 andy = et for 0≤ t ≤ 1

about thex-axis is given by 2π
∫ 1

0
et
√

e2t +4t2 dt .

13. Answer true or false. The area of the surface generated by
revolving the parametric curvex = t2 andy = et for 0≤ t ≤ 1

about they-axis is given by 2π
∫ 1

0
t2
√

e2t +4t2 dt .

14. The area of the surface generated by revolving the parametric
curvex = 4sint andy = 4cost for 0≤ t ≤ π about thex-axis
is

(a)
16π

3

(b)
8π
3

(c)
4π
3

(d) 64π

Section 6.6

1. Find the work done when a constant force of 20 lb in the pos-
itive x direction moves an object fromx = 3 to x = 4 ft.

(a) 20 ft-lb

(b) 140 ft-lb

(c) 40 ft-lb

(d) 100 ft-lb

2. A spring whose natural length is 35 cm is stretched to a length
of 40 cm by a 2 N force. Find the work done in stretching the
spring.

(a) 0.05 J

(b) 0.4 J

(c) 0.7 J

(d) 0.3 J

3. Assuming that 20 J of work stretches a spring from its natural
length of 60 cm to a length of 64 cm, find the spring constant
in N/cm.

(a) 4.03

(b) 8.06

(c) 125

(d) 250

4. Answer true or false. Assume a spring is stretched from
100 cm to 140 cm by a force of 500 N. The work needed
to do this is 200 J.

5. A cylindrical tank of radius 5 m and height 10 m is filled
with a liquid whose density is 1.84 kg/m3. How much work
is needed to pump the liquid out of the tank?

(a) 7,225.7 J

(b) 7,125.8 J

(c) 7,334.1 J

(d) 7,310.2 J

6. Answer true or false. The amount of work needed to pump a
liquid of density 0.95 kg/m3 from a spherical tank of radius

4 m is
∫ 8

0
0.95(8−x)πx2 dx.

7. An object in deep space is initially considered to be station-
ary. If a force of 250 N acts on the object over a distance of
400 m, how much work is done on the object?

(a) 0 J

(b) 100,000 J

(c) 50,000 J

(d) 25,000 J

8. Find the work done when a variable force ofF(x) =
3
x2 N

in the positivex-direction moves an object fromx = 2 m to
x = 8 m.

(a) 5.64 J

(b) 4.50 J

(c) 2.25 J

(d) 1.13 J

9. Find the work done when a variable force ofF(x) =
1
x2 N

in the positivex-direction moves an object fromx =−5 m to
x =−4 m.

(a) 0.113 J

(b) 1.00 J

(c) 0.05 J

(d) 0.25 J

10. Find the work done when a variable force ofF(x) = 30x N
in the positivex-direction moves an object fromx =−4 m to
x = 0 m.

(a) 240 J

(b) 320 J

(c) 80 J

(d) 160 J

11. If the Coulomb force is proportional tox−2, the work it does
is proportional to

(a) x−1

(b) x−3

(c) x



(d) x−2

12. Answer true or false. It takes the same amount of work to
move an object from 100,000 km above the earth to 200,000
km above the earth as it does to move the abject from 200,000
km above the earth to 300,000 km above the earth.

13. Answer true or false. It takes twice as much work to elevate
an object to 120 m above the earth as it does to elevate the
same object 60 m above the earth.

14. Answer true or false. It takes twice as much work to stretch a
spring 100 cm as it does to stretch the same spring 50 cm.

15. A 1 kg object is moving at 10.0 m/s. If a force in the direction
of motion does 40.0 J of work on the object, then what is the
object’s final speed?

(a) 13.4 m/s

(b) 5.5 m/s

(c) 5.0 m/s

(d) 11 m/s

Section 6.7

1. Consider the lamina bounded by the curvesy = x2, x = a
(with a > 0) in the first quadrant. Ifδ = x+1 then find an
expression for the mass of the lamina in terms ofa.

(a)
1
3

a3

(b)
a3

3
+

a4

4

(c)
a4

4
(1+(4/5)a)

(d)
a5

60
(6+5a)

2. For the lamina in problem #1 findMx in terms ofa.

(a)
1
3

a3

(b)
a3

3
+

a4

4

(c)
a4

4
(1+(4/5)a)

(d)
a5

60
(6+5a)

3. For the lamina in problem #1 findMy in terms ofa.

(a)
1
3

a3

(b)
a3

3
+

a4

4

(c)
a4

4
(1+(4/5)a)

(d)
a5

60
(6+5a)

4. A triangular region in the first quadrant is bounded by thex-
axis,y-axis, and the line between the points(0,a) and(b,0)
wherea,b > 0. Find the centroid of this region.

(a)

(

ab
2
,

ab
2

)

(b)

(

b
2
,

a
2

)

(c)

(

a2b
6

,
ab2

6

)

(d)

(

b
3
,

a
3

)

5. Consider the regionR in the first quadrant that is bounded by
y = 4− x2 with a constant densityδ . If the centroid of the
region is located at(x̄, ȳ), then which of the following state-
ments is true?

(a) M = 8
3δ

(b) ȳ = 8
5

(c) x̄ = 128
15

(d) Mx = 4δ

6. Consider the region in the first quadrant that is bounded by
the circlex2+ y2 = r2 with a density ofδ = 1. Which of the
following statements is true?

(a) M = πr2

(b) My = πr/2

(c) Mx = My

(d) The centroid of the region cannot be found.

7. Consider the lamina bounded by the curvesx = y2 − 4 and
y = x/3 with a constant densityδ . Which of the following
expressions represents the mass of the region?

(a)
∫ 12

−3
δ · (

√
x+4−x/3) dx

(b)
∫ 4

−1
δ · (3y−y2+4) dy

(c)
∫ 4

−1
δ · y · (3y−y2+4) dy

(d) None of the above

8. For the region described in Problem 7, which of the the fol-
lowing expressions represents the moment about thex-axis,
Mx.

(a)
∫ 4

−1
δ · (3y−y2+4) dy



(b)
∫ 12

−4
δ · x · (

√
x+4−x/3) dx

(c)
∫ 12

−4

δ
2

(

x+4− x2

9

)

dx

(d) None of the above

9. Answer true or false. For the region described in Problem 7,
thex-coordinate of the centroid of the region is negative.

10. Find the centroid of the region bounded by the curvesy=
√

x,
y = 1, andx = 4.

(a) (2.94,1.35)

(b) (1.35,2.94)

(c) (2.25,4.9)

(d) (4.9,2.25)

11. The quadrilateralABCD region has corners at the points
A(1,5), B(8,4), C(6,0), D(2,2). Find the centroid of the re-
gion.

(a) (9/2,17/6)

(b) (9/2,5/2)

(c) (44/9,5/2)

(d) (17/4,11/4)

12. A laminar region is bounded by the curvesx = 1, x = 10,
y= 0, andy = 1/x with δ = x2+1. Find the center of gravity
of the region.

(a) (5.17581,0.14168)

(b) (6.60199,0.09556)

(c) (6.72727,0.09091)

(d) (3.90865,0.19543)

Section 6.8

1. A flat rectangular plate is submerged horizontally in water to
a depth of 6.0 ft. If the top surface of the plate has an area of
50 ft2, and the liquid in which it is submerged is water, then
find the force on the top of the plate. Neglect the effect of the
atmosphere above the liquid. (The density of water is 62.4
lb/ft3.

(a) 300 lb

(b) 33.4 lb

(c) 2,080 lb

(d) 18,720 lb

2. Find the force (in N) on the top of a submerged object if its
surface is 10.0 m2 and the pressure acting on it is 3.2×105

Pa. Neglect the effect of the atmosphere above the liquid.

(a) 3.7×104 N

(b) 3.2×106 N

(c) 6.4×106 N

(d) 1.7×106 N

3. Find the force on a 100 ft wide by 5 ft deep wall of a swim-
ming pool filled with water. Neglect the effect of the atmo-
sphere above the liquid. (The density of water is 62.4 lb/ft3.)

(a) 78,000 lb

(b) 124,800 lb

(c) 62,400 lb

(d) 624 lb

4. Answer true or false. The force a liquid of densityρ exerts
on an equilateral triangle with edgesh in length submerged

point down is given by
∫ h

0

ρ
3

x2 dx.

5. A right triangle is submerged vertically with one side at the
surface in a liquid of densityρ. The triangle has a leg that is
20 m long located at the surface and a leg 10 m long straight
down. Find the force exerted on the triangular surface, in
terms of density. Neglect the effect of the atmosphere above
the liquid.

(a) 677ρ N

(b) 500ρ N

(c) 600ρ N

(d) 200ρ N

6. Answer true or false. A glass circular window on the side of
a submarine has the same force acting on the top half as on
the bottom half.

7. Find the force on a 30 ft2 horizontal surface 20 ft deep in
water. Neglect the effect of the atmosphere above the liquid.
(The density of water is 62.4 lb/ft3.)

(a) 600 lb

(b) 37,440 lb

(c) 1,200 lb

(d) 30,000 lb

8. Answer true or false. A flat sheet of material is submerged
vertically in water. The force acting on each side must be the
same.

9. Answer true or false. If a submerged horizontal object is el-
evated to half its original depth, the force exerted on the top
of the object will be half the force originally exerted on the
object. Assume there is a vacuum above the liquid surface.

10. Answer true or false. If a square, flat surface is suspended
vertically in water and its center is 20 m deep, the force on
the object will double if the object is relocated to a depth of
40 m. Neglect the effect of the atmosphere above the liquid.



11. Answer true or false. The force on a semicircular, vertical

wall with top d is given by
∫ 1/2

0
2ρx

√

d2

4
−x2 dx.

12. Answer true or false. The force exerted by water on a surface
of a square, vertical plate with edges of 3 m if it is suspended
with its top 2 m below the surface is 18 lb. (The density of
water is 62.4 lb/ft3.)

13. Answer true or false. If a submerged rectangle is rotated 90◦

about an axis through its center and perpendicular to its sur-
face, the force exerted on one side of it will be the same,
provided the entire rectangle remains submerged.

Section 6.9

1. Evaluate sinh(7).

(a) Not defined.

(b) 551.1614

(c) 548.3161

(d) 549.4283

2. Evaluate cosh−1(2).

(a) 1.3170

(b) 1.3165

(c) 1.3152

(d) 1.3174

3. Finddy/dx if y = sinh(5x+1).

(a) (5x+1)cosh(5x+1)

(b) 5cosh(5x+1)

(c) −(5x+1)cosh(5x+1)

(d) −5cosh(5x+1)

4. Finddy/dx if y = sinh(3x2).

(a) 6xcosh(3x2)

(b) −6xcosh(3x2)

(c) 6cosh(6x)

(d) −6cosh(6x)

5. Finddy/dx if y = 2
√

sech(x+5)−x3.

(a)
−sech(x+5) tanh(x+5)−3x2

√

sech(x+5)−x3

(b)
(x+5)cosh(x+5)−3x2
√

sinh(x+5)−x3

(c)
−cosh(x+5)+3x2
√

sinh(x+5)−x3

(d)
sech(x+5) tanh(x+5)+3x2

√

sech(x+5)−x3

6.
∫

sinh(3x+6) dx =

(a) 3cosh(3x+6)+C

(b)
1
3

cosh(3x+6)+C

(c) −3cosh(3x+6)+C

(d) −1
3

cosh(3x+6)+C

7.
∫

cosh7xsinhx dx =

(a)
1
8

cosh8x+C

(b) 8cosh8x+C

(c) 7cosh6x+C

(d)
1
6

cosh6x+C

8.
∫

sinh9xcoshx dx =

(a)
1
10

sinh10x+C

(b) 10sinh10x+C

(c) 9sinh8 x+C

(d)
1
8

sinh8 x+C

9. Finddy/dx if y = sinh−1( x
6

)

.

(a)
1√

36+x2

(b)
1

6
√

36+x2

(c)
1√

36−x2

(d)
1

6
√

36−x2

10. Answer true or false. Ify = −coth−1 (x+3) when |x| > 0,

thendy/dx =− 1
x2+6x+8

.

11.
∫

dx√
1+16x2

=

(a)
1
4

sinh−1 (4x)+C

(b)
1
4

coth−1 (4x)+C

(c)
1
4

cosh−1(4x)+C



(d)
1
4

tanh−1 (4x)+C

12. Answer true or false.
∫

4dx

1+e2x = 4sinh−1 (ex)+C

13. Answer true or false.
∫

exdx√
1+e2x

= sinh−1 (e2x)+C

14. Answer true or false. lim
x→∞

(coshx)2 = 0.

15. Answer true or false. lim
x→−∞

(cothx)2 = 1.

Chapter 6 Test

1. Find the area of the region enclosed byy = x2 andy = x by
integrating with respect tox.

(a) 1/6

(b) 1

(c) 1/4

(d) 1/16

2. Find the area of the region enclosed by
y = cos(x−π/2), y = −x, x = 0 andx = π/2. The approxi-
mate area is

(a) 1.1169

(b) 2.2337

(c) 4.4674

(d) 1

3. Find the volume of the solid that results when the region en-
closed by the curvesy =

√

−sin(−x), y = 0 andx = π/4 is
revolved about thex-axis. The approximate volume is

(a) 0.143

(b) 0.920

(c) 1.408

(d) 2.816

4. Find the volume of the solid that results when the region en-
closed by the curvesx = −ey, x = −1 andy = 1 is revolved
about they-axis. The approximate volume is

(a) 6.894

(b) 3.195

(c) 10.205

(d) 32.060

5. Answer true or false. Cylindrical shells can be used to find
the volume of the solid when the region enclosed byy = 3

√
x,

x = −3, x = 0 andy = 0 is revolved about they-axis and the
volume of the solid is 5.563π.

6. Answer true or false. Cylindrical shells can be used to find
the volume of the solid when the region enclosed byx = y2,
x = 0 andy =−2 is revolved about thex-axis and the volume
of the solid is 4π.

7. Answer true or false. The arc length ofy = cos(−x) from
x = 0 to x = π/2 is 1.

8. Answer true or false. The arc length of the parametric curve
x = sint andy =−cost, 0≤ t ≤ π/2 is π/2.

9. Answer true or false. The surface area of the curve
y = sin(x+π), −π ≤ y ≤ 0 revolved about thex-axis is

given by
∫ π

0
2πx
√

1+sin2(x+π) dx.

10. Use a CAS to find the surface area of the solid that results
when the curvey = −ex, 0≤ x ≤ 0.5 is revolved about the
x-axis. The approximate surface area is

(a) 18.54

(b) 9.27

(c) 1.48

(d) 6.78

11. Assume a spring whose natural length is 2.0 m is stretched
0.8 m by a 150 N force. How much work is done in stretch-
ing the spring?

(a) 60 J

(b) 6,120 J

(c) 6,000 J

(d) 240 J

12. Find the work done when a constant forceF(x) = 15 N in the
positivex-direction moves an object fromx = 4 m to 10 m.

(a) 45 J

(b) 90 J

(c) 180 J

(d) 150 J

13. Find the work done when a variable force ofF(x) =
4
x2 N

in the positivex-direction moves an object fromx = 1 m to
x = 3 m.

(a) 0 J

(b) 2.67 J

(c) 0.6 J

(d) 1.79 J

14. Answer true or false. A semicircular wall 20 ft across at the
top forms one end of a tank. The total force exerted on this
wall by a liquid that fills the tank is 24,800 lb. Ignore the
force of air above the liquid. (The density of the liquid is
124.8 lb/ft3.)



15. A horizontal table top is submerged in 10 ft of water. If the
dimensions of the table are 6 ft by 1 ft, find the force on the
top of the table that exceeds the force that would be exerted
by the atmosphere if the table were at the surface of the water.
(The density of water is 62.4 lb/ft3.)

(a) 3,744 lb

(b) 1,872 lb

(c) 4,000 lb

(d) 60 lb

16. Finddy/dx if y = tanh(x5).

(a) 5x4sech2(x5)

(b) −5x4sech2(x5)

(c) 5x4 tanh(x5)

(d) sech2(5x4)

17.
∫

tanh6xsech2x dx =

(a) 4tanh4x+C

(b) 5tanh6x+C

(c) 6tanh6x+C

(d)
1
7

tanh7 x+C

18. Answer true or false.
∫

4dx√
e2x −1

= 4cosh−1(ex)

19. Answer true or false. lim
x→∞

(cothx)2 = 1.

20. Evaluate cosh(1).

(a) 1.543

(b) 1.551

(c) 1.562

(d) 1.580

21. Find the centroid of the region bounded between the curves
y = |x| andx+2y = 3.

(a) (−4/3,2/3)

(b) (−2/3,4/3)

(c) (−3/2,4/3)

(d) (−3/2,2)



Chapter 6: Answers to Sample Tests

Section 6.1

1. a 2. false 3. a 4. c 5. b 6. b 7. c 8. a
9. d 10. false 11. false 12. false 13. true 14. b 15. a

Section 6.2

1. a 2. d 3. b 4. c 5. true 6. false 7. d 8. a
9. c 10. false 11. c 12. false 13. b 14. b 15. false

Section 6.3

1. d 2. b 3. b 4. c 5. c 6. a 7. a 8. b
9. d 10. b 11. c 12. a 13. b 14. false

Section 6.4

1. a 2. a 3. false 4. false 5. b 6. c 7. a 8. false
9. a 10. false 11. d 12. b 13. c 14. false

Section 6.5

1. b 2. c 3. c 4. false 5. false 6. false 7. d 8. d
9. false 10. false 11. false 12. true 13. true 14. d

Section 6.6

1. a 2. a 3. d 4. false 5. a 6. false 7. b 8. d
9. c 10. a 11. a 12. false 13. false 14. false 15. a

Section 6.7

1. b 2. d 3. c 4. d 5. b 6. c 7. b 8. d
9. false 10. a 11. a 12. b

Section 6.8

1. d 2. b 3. a 4. false 5. a 6. false 7. b 8. true
9. true 10. true 11. false 12. false 13. true

Section 6.9

1. c 2. a 3. b 4. a 5. a 6. b 7. a 8. a
9. a 10. false 11. a 12. false 13. false 14. false 15. false

Chapter 6 Test

1. a 2. b 3. b 4. a 5. false 6. false 7. false 8. true
9. false 10. d 11. a 12. b 13. b 14. false 15. a 16. a
17. d 18. false 19. true 20. a 21. b


