Chapter 6: Applications of the Definite
|ntegral in Geometry, Science and
Engineering

Summary: This chapter focuses upon using the methods of evaluating definite
integrals and applying them in various problems. The first problem considered
is that of finding the area between two curves. This extends the idea of finding
the area underneath a curve or the total area between a function and an interval.
The next application is to find the volumes of various objects or solids. Three
basic methods are introduced: the method of slicing, the method of washers (or
disks) and the method of shells. The latter two methods may only be applied in the
case of a volume of revolution when a curve is revolved around a particular axis.
After that, finding the length of a curve or the arc length is discussed. Next the
surface area of a solid of revolution is investigated and then the average value of a
function. Towards the end of the chapter, two physical applications are discussed:
work and force from fluid pressure. At the very end of the chapter, hyperbolic
functions such as sindand coskx are defined and studied.

OBJECTIVES: After reading and working through this chapter
you should be able to do the following:

1. Use definite integrals to find the area between two curve4 )86
2. Use the method of slicing to find the volume of a solid.2§6

3. Use the method of disks/washers to find the volume of a solid of revolution
(86.2).

4. Use the method of cylindrical shells to find the volume of a solid of revolu-
tion (86.3).

5. Find the arc length of a plane curve (&b
6. Find the surface area of a solid of revolution.&6

7. Calculate work done by constant and variable forces over a distané€g.(86

101



area problem
(see 851,5.4—5.6)

8. Find the center of gravity and centroid of a two dimensional region or thin
lamina (867).

9. Calculate the force due to fluid pressure on objects submerged in liquid
(86.8).

10. Learn the definitions and properties of the hyperbolic function®]86

6.1 Area Between Two Curves

PURPOSE: To use definite integrals to calculate the area be-
tween two curves.

Now thatareacan be described using definite integrals (from the previous chap-
ter), the next step is to use definite integrals to describe the area between two
curves. The process is rather straightforward. In the case of finding the area under
a single function, this can be thought of as finding the areas of many infinites-
mal rectangles between the function and the axis. Now, these rectangles will be
between the two curves. Then the general area function can be stated as

[ (10~ 1a00)

Ja

wherefy(x) > fa(x).

IDEA: Finding the area between two curves is like adding together the areas of
many small rectangles that lie between a top function and a bottom function.

However, if the two functions trade places then their positiothe formula needs
b

to change (i.e., ifp > fy thenuse/ (f2(x) — f1(X)) dx). The function on the bot-

tom is always being subtracted f?om the one on the top. This may require breaking
the integral into several smaller integrals with different limits of integration and
slightly different integrands.

IDEA: Limits of integration may depend upon where the two functions inter-
sect. Limits are chosen so that the “bottom” function is always being sub-
tracted from the “top.”

Limits of integration will either be given or they must be falunt always must

be determined if the functions intersect. The points of intersection will help to
determine the limits of integration necessary on the integrals as well as helping to
determine which function is the top and which is the bottom.

Another way of thinking of the area between two functions is to define a new
function: h(x) = f1(x) — f2(x). For exampleh(x) might represent the height of

one of the small rectangles between the two functions. Then the area between the
two functions can be written as

b
/a Ih(x)| dx



The integrand|h(x)| dx represents the area of one of the infinitesmal rectangles
and the integral is then summing together all of the rectangle areas. The absolute
value ensures that the function on the bottom is being subtracted from the function
on the top so that each rectangle has a positive height.

It is also a simple matter to change these formulas so that they are written with vertical rectangles bétxgen
respect toy instead ofx. The functions used as integrands need to be written as andf,(x) — dxwidth

functions ofy instead ofx and the limits of integration need to be changed to
values instead ofvalues. Otherwise, the process is the same even though visually
it may appear to be different.

horizontal rectangles between(y)
andgy(y) — dy width

Checklist of Key Ideas:

O area between two curves
O calculating area using definite integrals; finding the limits of integration

0 area formulas with respect foand/ory

6.2 Volumes by Slicing; Disks and Washers

PURPOSE: To calculate the volumes of solids oriented along a
particular axis.

Finding the volume of different solids is very closely related to the process of
finding the area under a curve or the area between two curves. In each case, the
idea is to find a way to slice the solid into smaller shapes that can be described
by a definite integral. The slices that are used will all be perpendicular to some
common axis.

IDEA: Each object studied here will be divided up into slices so that each slice
is perpendicular to either the X or y-axis.

The most general is the method wilume by slicing In this case, either the volume by slicing
cross-section of each slice is given or can be found geometrically. Then the area
of the cross-sectio\(x), is the integrand.

V= /abA(x) dx

The volume of each slice can be thought ofA{%) dx and then the integral is
simply adding together all of the slices.

The method of disksand themethod of washersare more specific applications disk and washers
of the method of slicing. If the solid is the result of revolving a curve about an axis

then the cross-sections will all be circular in shape. TAéq = mt [f1(x)]? (in

the method of disks) ok(x) = 71([f1(x)]2 — [f2(X)]?) (in the method of washers).

Here the function values are the radius of each of the circles (i.e., the distance to

thex-axis).



revolving about-axis

IDEA: The method of disks is a specific case of the method of washers where
the inner function is zero, i.e., fo(x) = 0.

The reader may notice that the method of disks is just a speasie of the method

of washers where th&(x) = 0. Also, both the disk and washer methods are di-
rectly related to the area problem from the previous sectiom,(K) = 11 [f1(x)]?
andhy(x) = 11 [f2(x)]? then the method of washers is just the total area between
the functionsh; andh,.

All of the above descriptions are given in terms of revolving a function about the
x-axis. If a function isrevolving about the y-axis then the integrals need to be
written with respect to/ and the functions need to be functionsyof Also the
limits need to be written as valuesyf

Here is a general summary of the method of washers (and digkeliy; is zero):

Revolving arounc-axis:
X=b
v :/ n([F012 = [f2(x)]2) dx if 1> f,>0
X=a
Revolving around the ling = k (parallel to thex-axis):
x=b
V= / n([f1() — K2 — [f2() —K2) dx  if f1> f, >k
X=a
X=b
v :/ (k= f2(0)12— k= f,0012) dx  if k> fy > f
X=a
Revolving aroung-axis:

=d
V= [ (o)~ ae)?) oy 012020

Revolving around the line= k (parallel toy-axis):
y=d 2 2 ;
v [ i) K-y K dy ez gok

y—d , ) |
V= [l w - ke &y koo

Checklist of Key Ideas:

O volume by slicing; general volume formulas (with respect smd/ory)
0 volume of a right cylinder; volume of a disk

0 axis perpendicular to disks

O solids of revolution

OO0 method of disks; method of washers



6.3 Volumes by Cylindrical Shells

PURPOSE: To use integrals to compute the volume of a solid
using cylindrical shells.

The method of disks and shells are designed specifically for the situation where
a solid is obtained by a revolution of a curve about a particular axis (usually the

X- or y-axis or some line that is parallel to one of them). Thethod of shells

is based upon the volume of a right circular cylinder. The volume of one shell is

given by

shell volume= 27(x— a) f (x) dx

where the shell has a center along the ling-ata. Then the volume formula will
be given by

V= /i:b2rr(x— a)f(x) dx

Notice that in this example the solid is revolved about axirea which is parallel
to they-axis.

IDEA: Washers and shells require integration with respect to the opposite vari-
able. In some cases this may make one method easier than the other.

Using themethod of washersin this case would have used integration with re-
spect toy. Because of this difference, it may be easier to applyntie¢hod of
shellsthan the method of washers in some cases. Another difference between the
method of washers (or disks) and shells is that the method of washers requires that
the function be squared while the method of shells requires that the function be
multiplied by a distance (usually for example).

Checklist of Key Ideas:

O volume of a cylindrical shell; difference between shells and disks
0 method of cylindrical shells
0 volume formula about the- or y-axis

O units of the integral

6.4 Length of a Plane Curve

PURPOSE: To use integrals to find the length of a piece of a
curve.

There is only one idea that is introduced in this section: how to find the length of
a piece of a curve. The formula that is used is straightforward and requires that

method of shells

washers vs. shells



some integrals may require
numerical methods (see 857.7) or
CAS (see 88)

Three arc length formulas
1. with respecttx, y = f(x)
2. with respect ty, x = g(y)

3. parametrically (see also
§101)

frustum
slant height

the derivative of the function be obtained. Often the integral that results cannot be
evaluated without special means such amimerical method or CAS. The fact

that the derivative is required indicates when this formula may be applied. The
function in question must have a derivative over the entire length of the curve or
else the formula may return faulty values.

IDEA: To calculate arc length requires that the appropriate derivatives of the
curve can be calculated.

Three formulas are given for finding the length of a curve. Onenigh respect to
x and one iswvith respect toy. Arc length can also be calculatpdrametrically .
This will also be discussed later in Section 10.1.

b
/ 1/ 1+ (dy/dx)? dx with respect tox
a
d
/ \/ 1+ (dx/dy)? dy with respect tox
C

b
/\/(dx/dt)2+(dy/dt)2dt parametrically
a

In some cases, writing the length with a different integral can be the difference
between getting an exact answer and having to evaluate the definite integral nu-
merically.

Checklist of Key Ideas:

O arc length problem

O smooth curves/functions

O formula for arc length (with respect toand/ory)

O arc length formula for curves defined parametrically

O units of the integral

6.5 Area of a Surface of Revolution

PURPOSE: To use integrals to compute the area of a surface of
revolution.

After discussing solids of revolution and the length of an arc, the area of a surface
of revolution can be discussed. There is only one formula that is introduced in this
section: finding the surface area of a solid of revolution.

The area formula is based upon the surface areafoistum of slant height
I: area= m(r1 +r2)l. The slant height of the frustum can be found using the

incremental arc length df= /1 + [f/(x)]2 dx.



IDEA: The slant height of the frustum is found using the arc length ideas from
the previous section. This means that the appropriate derivative needs to
exist.

The radius of the top and bottom of the frustum are approxip#te same and
so the area becomes

area= 1(2f(x))y/1+ [f/(x)]2 dx
Then summing these areas, the surface area can be written as
x=b
A:/ 2mf (x)y/ 1+ [f/(x)]2 dx
[t (/14 (100
Often this formula cannot be evaluated directly or will neesubstitution. numerical methods (see 857.7)

CAS (see §8/B)
Checklist of Key Ideas:

O surface area problem
O surface of revolution

O formula for finding area of a surface of revolution

6.6 Work

PURPOSE: To use integrals to compute the work done by a
force.

Theunits of work are energy and work is done by applying a force over a distance. units of work
The units of energy (and work) can be found by multiplying together the units of
force and the units of distance.

IDEA: Three types of force:
1. constant force
2. variable force

3. many cases of constant force

In this sectionthree types of workare considered: with a constant force, with a

variable force, and adding together many cases where the force is constant. When

the force is constant then the work done is simply the product of the forge, constant force
and the distancel, over which the force is applied.

W=F-.d

When theforce is variable, then the work done is the integral of the forE€x): variable force



work and springs

pumping liquids

lifting=applying a force

x=b
work:/ F(x) dx
X=a

Notice that the units oF (x) dx will be force times length which should equal
energy.

IDEA: Two special types of work:
1. work done by springs

2. work of pumping a liquid

Two special types of work are considered in this section: velwke on a spring

and work done pumping liquid. Feprings, the force that is applied is a variable
force that is proportional to the amount that the spring is compressed or stretched,
F (x) = kx, wherek is the spring constant.

Forpumping liquids, the total work can be thought of as many separate instances
of work being done with a constant force that are then added together. This is
very similar to the volume by slicing method introduced earlier in this chapter
(see 8&2). A volume of liquid can be divided into thin layers of liquid that have a
cross-sectional area 8{x) and a thickness afx so that each layer has a volume

of A(x) dx. Then multiplying the volume of each layer by its weight density will
give the weight of the layer. The process of pumping is thdiftteach layer of

liquid a certain distance.

IDEA: Thinking of the liquid as many different layers is similar to finding the
volume of an object by slicing. In this problem, the slices or layers are also
being moved some distance. So two key ideas are

1. the size of each “layer” of liquid

2. how far the “layer” is being moved

For both pumping and spring problems, care should be taken ali@sing what
thex-axis represents. In spring problems; 0 represents when the spring is at its
natural length. Ther = 1 would represent when the spring is stretched beyond,
or compressed from, its natural length by one unit.

IDEA: Picking an Xx-axis can usually be done in more than one way. The
important thing is to be consistent throughout the problem.

In pumping problems, one convention (as used by this book)iave the positive

x direction to be in the downward direction. Whete- 0 is located is arbitrary

and is often left up to the reader. Usuaty= 0 is chosen to be in a position that
makes other pieces of the integrand to be relatively simple expressions. However
the pumping is done, the lower limit of integration should be less than the upper
limit of integration and the distance that each layer of liquid is pumped should be
positive. The result should be a positive amount of work done. Also, the limits of
integration are chosen based upon where the liquid is located oretkis, not on
where the liquid is being pumped to.



IDEA: Be careful with the distance and the limits of integration. The overall
work in lifting liquid should be a positive amount of energy.

Lastly, work is equivalent to the change in kinetic energyof an object. This is work is change in
shown by the equation kinetic energy
1 1

wherev; is the final velocity of an object ang is the initial velocity of an ob-

ject. When calculating work based upon change in velocity, no integrals have to
be evaluated. The work may be calculated by evaluating the above expression
directly.

Checklist of Key Ideas:

O work-energy relationship; kinetic energy
0 work of a constant force over a distance
OO work of a variable force over a distance
O springs and spring constants

O pumping liquid

6.7 Moments, Centers of Gravity, and Centroids

PURPOSE: To find the center of gravity of an inhomogeneous
lamina or the centroid of a homogeneous lamina.

This section discusses how to find the center of gravity of a thin, two-dimensional

region called damina. Since this region is two-dimensional we will describe the lamina

region using equations in thg-plane. The lamina may have some non-constant  inhomogeneous
density function,d(x), in which case the lamina is said to bdhomogeneous homogeneous
Otherwise the lamina is calldtbmogeneous The center of gravity is the point

in the region upon which the region can be balanced. In other words, the force center of gravity

due to gravity on the region can be seen as a single force that acts on the region centroid
through its center of gravity. When a lamina is homogeneous, the center of gravity
is called the centroid.

IDEA: The integrals for M, My and My are required to calculate the center of
gravity or centroid.
_ My — M
X=—andy=—
M YW
Three integral formulas are necessary to calculate the center of gravity of a lamina:
themoment about thex-axis (M), themoment about they-axis (My), and the M, mass
My, moment about-axis
My, moment abouy-axis



centroids depends only
upon the shape of lamina

Theorem of Pappus
solids of revolution

mass(M) of the region. The integrals required to calculate these are very similar
to integrals used in other applications in this chapter.

IDEA: Setting up the integral for mass, M, of a laminar region Ris very similar
to setting up the integral for finding the area of the region.

For example, finding the mass of a region is very similar to figdhe area of a
region. Finding the moments about thaxis andy-axis are very similar to the
integrals that arise when finding the volume of a solid of revolution.

IDEA: Setting up the integrals for My and My are very similar to the integrals
that are used to find volumes for solids of revolution about the X-axis and y-axis
respectively.

Suppose that a regidis bounded by the curvgs= f(x) at the bottomy = g(x)
at the top, anat = a andx = b at the left and right. When integrating with respect
b

to x, the area of this region is given by the following integ}/aI (g(x) — f(x)) dx.
Calculating the mass simply inserts the densityinto this in?egral:

M:/abé-(g(x)—f(x))dx.

Also, the moment about theaxis,

b
M= |62 - 1(97) o,

looks remarkably similar to integration the washer method when it is used to find
the volume of the solid of revolution about thexis. Likewise, the moment about
they-axis,

b
My = [ "x-8- (g0 ~ () dx

looks much like the volume when revolving about fraxis if the shell method
is used. If integration with respect jois used, they will look like the shell
method being used around tkeaxis andMy will resemble the washer method
being used around theaxis.

The centroid is found in essentially the same way as the center of gravity. There
will be no real difference in the calculation other than the density of the region
will be constant. This will cause the density to divide out of the calculatioxn of —
andy. Since the centroid is then independent of the density, the location of the
centroid is considered to be a geometric property of the region. That is, only the
shape of the region has an impact upon the location of the centroid.

IDEA: The Theorem of Pappus allows the centroid of a region to be used as a
convenient tool for finding the volume of a solid of revolution.

volume = (circumference travelled by centroid) x (area of region)

A useful application of the centroid is found in calculatihg tolume of a solid of
revolution. The Theorem of Pappusessentially says that the volume is equal to



the area of the region times the distance that the centroid travels when the region
is revolved. To find the distance that the centroid travels, imagine its path as a
circle. The distance it is revolved will be equal to the circumference of the circle.
The radius of this circle is the straight distance from the centroid to the line being
revolved around. Any line can be considered, not just vertical and horizontal lines.

Checklist of Key Ideas:

inhomogeneous lamina
homogeneous lamina

moments about the-axis andy-axis
center of gravity

centroid

mass of a lamina

O 0o o oo oo

Theorem of Pappus

6.8 Fluid Pressure and Force

PURPOSE: To use integrals to calculate the total force that is
applied by a fluid over an area.

The idea presented in this section is force applied over an area and finding the

total force that is applied by a fluid on a submerged object or surface. As in the

previous section, thanits that are being used can help to straighten out how to units
write the integrals involved.

The basic formula being used is the relationship between férceressurep,
and ared.

F
F=PA or P=—
A

Thus the units of pressurk, are force per area. In the Sl system this is typically
given as Pascals or Pa. In the BE system, this is usually given as pounds per square
inch or PSI.

The main problem considered here is how to calculate the force on a submerged
surface whether it is horizontal, vertical or inclined at some angle (see the exer-

cises). The direction of the force on the surface is known to be perpendicular to

the surface in question.

If it is a horizontal surface then the force is just equal to the pressure times the horizontal surface
area. The pressure is shown to be the weight dersjtymes the distancd, at
which the surface is submerged. Then the force is given as follows.

F = phA



vertical surface

sinhu =

coshu=

tanhu =

U_gu

e'4 e

sinhu

coshu

If the surface is verticalthen the force is calculated using an integral. X¥exis

is taken to be positive in the downward direction= 0 does not necessarily need

to be at the surface of the liquid. The submerged surface is divided into horizontal
strips which have a thickness dk and a width given byv(x) giving each hori-
zontal strip an area ofi(x) dx. Each strip has a depth bfx) below the surface

of the liquid. Then each strip will experience a forceph(x)w(x) dx. This is
integrated with limits of integration based upon where the submerged surface is
on thex-axis.

x=b
/ ph(x)w(x) dx
JX=a

Herex = ais at the top of the surface amd= b is at the bottom of the submerged
surface. As a check, the units @h(x)w(x) dx should be units of force.

Checklist of Key Ideas:

O definition of pressure

O fluid density; mass/weight density

O fluid pressure on horizontal or vertical surface
O formula for finding fluid force

O units of the integral

6.9 Hyperbolic Functions and Hanging Cables

PURPOSE: To define the various hyperbolic trigonometric func-
tions and to discuss their properties.

Hyperbolic functions are introduced and defined in this section. These functions
are not really an application of integrals but rather are a new group of functions
which are defined as combinations of exponential functions. Everything that is

shown in this section can be found by remembering the definitions of each func-
—X

tion. For example, since sixh= then its derivatives and antiderivatives

can be found by simply knowing this information fet ande *. Once this type

of information is known for sink and coslx, then similar results can be obtained

sinhx
for tanhx = coshe’

Other important features can be remembered by thinking ofxsamtd costx in
pieces:

sinhx =

coshx =

efX
>
efX
Tt

N R N B



Recall thate* — 0 asx — —o ande ™ — 0 asx — . Then sink and cosk
become asymptotically close &/2 asx — . On the other hand, sintbecomes
asymptotically close te-e */2 asx — —co and coslx becomes asymptotically
close toe */2 asx — —o. Similar properties of tankand the other hyperbolic
functions by either defining them in terms@fande ™ or in terms of sinkx and
coshx.

IDEA: All the definitions can be written in terms of sinhx and coshx.

For example,
sinhx 1
tanhx = sechx= ——
coshx coshx
cothx = C(_)th cschx= —
sinhx sinhx

IDEA: Make notecards with the various definitions and properties of the hy-
perbolic functions to help remember them.

If the reader is not familiar with the material in this sectitimen it is suggested
that the reader make a few notecards with any new information and have them
handy as they attempt the exercises at the end of the section.

Checklist of Key Ideas:

€ as a sum of even and odd functions
hyperbolic functions

curvilinear asymptotes

catenary; hanging cables

hyperbolic identities

hyperbolic inverses and derivatives

O 0o o o o o o

logarithmic forms of inverse hyperbolic functions



Chapter 6 Sample Tests
Section6.1

1. Find the area of the region enclosed by the cupes? and
y = —x by integrating with respect ta
(@) 1/6
(b) 1
(c) 1/4
(d) 1/16
2. Answer true or falsefo2 (8x—x3) dx = .[02 (y—&y) dy
3. Find the area enclosed by the curyes—x°, y= — X, x=0
andx=1/2.
(&) 0295
(b) 0.315
(c) 0.273
(d) 0.279

4. Find the area enclosed by the curyes sin(3x), y = 2x,
x=0andx =Tt
(a) 427
(b) 2.38
(c) 9.32
(d) 1068

5. Find the area between the curyes |[x— 2|,y = )_2( +2.

(a) 30240
(b) 12000
(c) 3.0251
(d) 30262

6. Find the area between the curves 2|y|, x=—2y+4 and
y=0.
@1
(b) 2
(c) 05
(d) 03

7. Use a graphing utility to find the area of the region enclosed

by the curvesy = x3 — 2x2 +5x+2,y = 0,x = 0 andx = 2.
(a) 34/3
(b) 37/3
(c) 38/3
(d) 40/3

8.

9.

10.

11.

12.

13.

14.

15.

Use a graphing utility to find the area enclosed by the curves
y=—x2 y=x% x=0andx=3.

(a) 1305
(b) 12075
(c) 1405
(d) 12525

Use a graphing utility to find the area enclosed by the curves

x=2y* x=/2y.
(@ 2
(b) 1
(c) 0.76
(d) 093

Answer true or false. The curves- x2 + 5 andy = 6x inter-
sectatx =1 andx = 2.

Answer true or false. The curves= y2 + 3 andx = 11y in-
tersect ay = 3 andy = 6.

Answer true or false. The curvgs= cos(x) — 1 andy = x2
intersect ak = 0 andx = 1t.

Answer true or false. The curvgs- 2sin(7x/2) andy = 2x3
intersect ak = 0 andx = 1.

Find a vertical linex = k that divides the area enclosed by
y= —/%X y =0 andx = 4 into two equal areas.

(@) k=4
(b) k=423
(c) k=432
(d) k=2

Approximate the area of the region that lies below
y = 3cog(x/3) and abovey = 0.3x, where 0< x < T1.

(@) 6314
(b) 2442
(c) 0.558
(d) 1118



Section 6.2 (a) 083

b) 262

1. Use the method of disks to find the volume of the solid that re- (b)
sults by revolving the region enclosed by the curyes—x3, (c) 823
x= —4,x=0 andy = 0 about thec-axis (round to the nearest (d)y 224

whole number). 8. Use the method of disks to find the volume of the solid

(&) 7,353 that results by revolving the region enclosed by the curves
(b) 3677 X=/4y+16,x =0, andy = —1 about they-axis. The ap-
© 174 206 proximate volume is
C 2l
(d) 46,201 (2) 565
b) 482
2. Use the method of disks to find the volume of the solid (®)
that results by revolving the region enclosed by the curves (c) 153
y = /Cosx, x= 0, X = 11/2 andy = 0 about thex-axis. (d) 180
(a) /4 9. Use the method of disks to find the volume of the solid that
(b) 21 results by revolving the region enclosed by the cumvesy?,
© /2 X = —y+ 6 about they-axis. The approximate volume is
c) T,
@) (a) 2083
b) 6545
3. Use the method of disks to find the volume of the solid ®)
(c) 52360

that results by revolving the region enclosed by the curves
y=x%2—4,y=0, andx = 0 about they-axis (round to the (d) 1,02808

hearest whole number). 10. Answer true or false. The volume of the solid that results

(@) 17 when the region enclosed by the curves y8 andx =8 is
1
(b) 54 revolved about thg-axis is given by / (Y —y8)2 dy.
0
() 64 11. Find the volume of the solid whose base is enclosed by the
(d) 201 circle (x—2)2 + (y+3)2 = 9 and whose cross sections taken
4. Use the method of disks to find the volume of the solid pelrpenQ|cuIar to the base are semicircles. The approximate
that results by revolving the region enclosed by the curves volume 1s
y=x+€", y=0,x=0 andx = 1 about thex-axis. The ap- (a) 11310
proximate volume is (b) 35531
(a) 553 (c) 565
(b) 1105 (d) 11765
() 1737 12. Answer true or false A right-circular cylinder of radius 8 cm
(d) 3473 contains a hollow sphere of radius 4 cm. If the cylinder is

filled to a height ofh cm with water and the sphere floats so
that its highest point is 1 cm above the water level, there is
167th — 871/3 cn® of water in the cylinder.
. Use the method of disks to find the volume of the solid
6. Answer true or false. The volume of the solid that results that results by revolving the region enclosed by the curves
when the region enclosed by the curves= J%, y = 0, y = codx, x = 21, andx = 571/2 about thex-axis. The ap-

5. Answer true or false. The volume of the solid that results
when the region enclosed by the curyes x1%, y=0,x=0

2
andx = 2 is revolved about the-axis is given by/ %0 dix. 13
0

x =0 andx = 3 is revolved about the-axis is given by proximate volume is
2
(/3n%(dx) _ (@) 035
0 (b) 111

7. Use the method of disks to find the volume of the solid that re- o) 049
sults by revolving the region enclosed by the curyes—x®, © o
x=0,y= —1 about the/-axis. The approximate volume is (d) 0.76



14.

15.

Use the method of washers to find the volume of the solid
that results by revolving the region enclosed by the curves
y=—e* x=2, andy = —1 about thec-axis (round to the
nearest whole number).

(a) 574698

(b) 2,334

(c) 693

(d) 2,178
Answer true or false. The volume of the solid that results
when the region enclosed by the curyes- X2 andx =y

is revolved abouk = 1 isV = 0.133 (rounded to 3 decimal
places).

Section 6.3

1.

2.

Use cylindrical shells to find the volume of the solid when
the region enclosed by=x2, x= —2,x=—1 andy =0 is
revolved about thg-axis.

151

4

15m

4

15m

8

15m

@ ==

Use cylindrical shells to find the volume of the solid when
the region enclosed by= \/—X, x=0,x=—1andy=0s
revolved about thg-axis.

(@) 04mr
(b) 0.8
(c) 0.2
(d) 0.2m2

@)
(b)
(©

. Use cylindrical shells to find the volume of the solid when the

region enclosed by = X—32 x=1,x=2andy=0is revolved
about they-axis. The approximate volume is

(a) 2081

(b) 4.16m

(c) 2.08m?

(d) 4167

. Use cylindrical shells to find the volume of the solid when

the region enclosed by= —x 3 x=1,x=2 andy=0s
revolved about thg-axis.

10.

(a)

(b) 0.5m
() m

(d) 0.051

. Use cylindrical shells to find the volume of the solid when the

region enclosed by = —sin(—x?),y=0,x=0andx=11is
revolved about thg-axis. The approximate volume is

(a) 0560t

(b) 0.520r

(c) 0.460m

(d) 0.500rr

. Use cylindrical shells to find the volume of the solid when

the region enclosed by = 2exz, x=1,x=2andy=0is
revolved about thg-axis. The approximate volume is

(a) 1038m

(b) 12970

(c) 6.485m1

(d) 25940

. Use cylindrical shells to find the volume of the solid when

the region enclosed by= 4 —x, y = x, andy = 0 is revolved
about they-axis.

(a) 80t
(b) 32
(c) 16m
(d) 8

. Use cylindrical shells to find the volume of the solid when the

region enclosed by = 2x2 — 6x andy = 0 is revolved about
they-axis.
27
(@) >
(b) 27
27
© 5

@ "

. Use cylindrical shells to find the volume of the solid when

the region enclosed by= —y?, x=0 andy = —2 is revolved
about thex-axis.

(a) 4

(b) 4m

(c) 8

(d) 8m

Use cylindrical shells to find the volume of the solid when

the region enclosed by= v/8x, x =1 andy = 0 is revolved
about thex-axis.



11.

12.

13.

14.

19m

20

12m

5

10m

3

8m

@ =

Use cylindrical shells to find the volume of the solid when the
region enclosed byy = 7 andx+y = —6 is revolved about
thex-axis. The approximate volume is

(@) 132
(b) 164m
(c) 7.54m
(d) e56m

Use cylindrical shells to find the volume of the solid when
the region enclosed by= —x%, x=1,x=2 andy =0 is
revolved about the ling = 1.

17m
(@) 6
15m
2
5m
6
14m
@ =
Use cylindrical shells to find the volume of the solid when
the region enclosed by=x%, x=0,x= —2 andy =0 is
revolved about the ling = 1.

() 8
40mt

b) —

(b) =

8m

(©) 3

16m

d) =

(@

Answer true or false. The volume resulting from revolving

the region enclosed by the semicirgle- /16— x2 about the

X-axis is s2n
3

@
(b)
(©

(b)
(©

Section 6.4

1.

Find the arc length of the curwe= —2x3/2 from x = 0 to
x = 3. The approximate arc length is

(@) 109
(b) 1097

. Answer true or false.

. Find the arc length of the parametric cure

(c) 68
(d) 6.8m

. Find the arc length of the curye= }(xz +3)%2 fromx=0

tox = 2. The approximate arc length is
(@) 7.17
(b) 1434
(c) 2868
(d) 5196

The arc length of the curve
y=(x—2)%2 from x = 0 to x = 5 is given by

/05\/1+(x72)5 dx.

. Answer true or false. The arc length of the cuyve & + e

4
fromx=0tox=4is ivenb/ 1+ ()2 dx.
g A 1+ (e¥)

. The arc length of the curve= ffls(y2 +4)%2 fromy=—1to

y=0is
(a) 56
(b) 7/6
(c) 5/3
(d) 4
3 andy =t3
for 0 <t < 2. The approximate arc length is
(a) 3328
(b) 3324
(c) 10180
(d) 3348

. Find the arc length of the parametric cumwe- —cost and

y=sintfor0<t < /2.
(a) m/2
(b) /4
(c) vm
(d) m

. Answer true or false. The arc length of the parametric curve

3
x =3 andy =€ for 0 <t < 3is given by/ Vaé dt.
0

. The arc length of the parametric curve= —cos(2t),

y=sin(2t)for0<t<1lis
(@ 2
(b) V2
() m
(d) 2



10. Answer true or false. The arc length of the parametric curve (d) 7.02

2
x=et andy= e for0<t < 2 is given by/ V/3e dt. 3. Find the area of the surface generated by revolving
0 . .
X=+/y+1,0<y<1aboutthg-axis. The approximate sur-
11. Use.a CAS or a calculator with integratjon capabilities to ap- face a);ea is y ¥ PP
proximate the arc length of the curye= sin(—x) fromx=0
tox=r1/2. (a) 6788
b) 3.44
(@) 143 ()
b) 174 (c) 828
®) 1 (d) 2160
(c) 186
4. Answer true or false. The area of the surface generated by
(d) 191 revolving x = /3y, 1<y <5 about they-axis is given by
12. Use a CAS or a calculator with integration capabilities to /52 (1 3 ) d
. . ny| 1+ Y.
approximate the arc length of the curxe- sin(—3y) from 1 4+/3x
y=0toy=rr. 5. Answer true or false. The area of the surface generated by
revolving x = &2, 0<y < 1 about they-axis is given by
(a) 2042 2 1 N
+
(b) 6.987 2 /0 14+ dy.
(c) 2051 6. Answer true or false. the area of the surface generated by

revolving x = siny, 0 <y < 1T about they-axis is given by

d) 2916 Tt
@ /0 2my\/1—cogx dx.

13. Use a CAS or a calculator with integration capabilities to ap-

proximate the arc length of the curye= —xe* fromx = 0 to 7. Use a CAS or a scientific calculator with numerical integra-

tion capabilities to approximate the area of the surface gener-

xX=2.
ated by revolving the curvg = e*+1, —1 < x< —0.5 about
(a) 2102 thex-axis.
(b) 417 (a) 1854
(c) 1504 (b) 9.27
(d) 1971 (c) 148

14. Answer true or false. The arc lengthyof xcosxfromx =0 (d) 678
to x = mrcan be approximated by a CAS or a calculator with 8. Use a CAS or a scientific calculator with numerical integra-

integration capabilities to be @98. tion capabilities to approximate the area of the surface gen-
erated by revolving the curvey = 1, 1<y < 2 about thex-
axis.
Section 6.5 () 5016
(b) 5394
1. Find the area of the surface generated by revolyiag—2x, (c) 7.678
0 <x< 1 about thet-axis. The approximate surface area is (d) 10502
(@) 447 9. Answer true or false. A CAS or a calculator with numer-
(b) 1405 ical integration capabilities can be used to approximate the
() 2810 area of the surface generated by revolving the cyezeosx,
) 8828 0 < x < /2 about thex-axis to be 1.
& 10. Answer true or false. A CAS or a calculator with numer-
2. Find the area of the surface generated by revolving ical integration capabilities can be used to approximate the
y=+v1+X%, —1<x<0 about thex-axis. The approximate area of the surface generated by revolving the cyezesinx,
surface area is 0 < x < /2 about thex-axis to be 1.
() 447 11. Answer true or false. A CAS or a calculator with numer-
ical integration capabilities can be used to approximate the
(b) 2807

area of the surface generated by revolving the cxeveosy,
(c) 533 0 <y < /2 about they-axis to be 808.



12. Answer true or false. The area of the surface generated by
revolving the parametric curve=t2andy =€ for0<t <1

1
about thex-axis is given by ZI/ & VeX + 42 dt.
0

Answer true or false. The area of the surface generated by
revolving the parametric curve=t2andy =€ for0<t <1

1
about they-axis is given by Zr/ t2\/e2 + 42 dt.
0

The area of the surface generated by revolving the parametric
curvex = 4sint andy = 4cog for 0 <t < rabout thex-axis
is

@

13.

14.

(b)

(©
(d)

Section 6.6

1. Find the work done when a constant force of 20 Ib in the pos-
itive x direction moves an object from= 3 tox = 4 ft.

(a) 20 ft-lb
(b) 140 ft-Ib
(©) 40 ft-Ib
(d) 100 ft-Ib

. Aspring whose natural length is 35 cm is stretched to a length
of 40 cm by a 2 N force. Find the work done in stretching the

spring.
(&) 005
(b) 0.4
(c) 0.7
(d) 0.3J

. Assuming that 20 J of work stretches a spring from its natural
length of 60 cm to a length of 64 cm, find the spring constant
in N/cm.

(a) 403
(b) 8.06
(c) 125
(d) 250
. Answer true or false. Assume a spring is stretched from

100 cm to 140 cm by a force of 500 N. The work needed
to do this is 200 J.

5

10.

11.

. A cylindrical tank of radius 5 m and height 10 m is filled
with a liquid whose density is.&4 kg/n?. How much work
is needed to pump the liquid out of the tank?

(a) 722573
(b) 7,1258J
(c) 7,3341J
(d) 7,3102J

. Answer true or false. The amount of work needed to pump a

liquid of density 095 kg/n? from a spherical tank of radius
8

4m is/ 0.95(8 — X) ¢ dx.
0

. An object in deep space is initially considered to be station-
ary. If a force of 250 N acts on the object over a distance of
400 m, how much work is done on the object?

(@ 0J

(b) 100000 J
(c) 50,000J
(d) 25000 J

. Find the work done when a variable forceFofx) = X—SZ N
in the positivex-direction moves an object from= 2 m to
Xx=8m.

(a) 564J
(b) 4503
(c) 225
(d) 1137

. Find the work done when a variable forceFofx) = X—lz N
in the positivex-direction moves an object from= —5 m to
X=—-4m.

(a) 01133

(b) 1.00J

(c) 0057

(d) 0253
Find the work done when a variable forceFdfx) = 30x N
in the positivex-direction moves an object from= —4 m to
Xx=0m.

(a) 2403

(b) 3203

(c) 80J

(d) 160J
If the Coulomb force is proportional 102, the work it does
is proportional to

(@ x*

(b) x°3

(c) x



4
(@ x* © %+ @52
12. Answer true or false. It takes the same amount of work to 5
move an object from 10000 km above the earth to 2@D0O (d) a (6+5a)
km above the earth as it does to move the abject from@uD 60

km above the earth to 30000 km above the earth. 4. Atriangular region in the first quadrant is bounded byxthe

axis, y-axis, and the line between the poiriésa) and(b,0)

13. Answer true or false. It takes twice as much work to elevate wherea. b > 0. Find the centroid of this region
an object to 120 m above the earth as it does to elevate the ’ ’ glon.
same object 60 m above the earth. @ ( ab aj)
14. Answer true or false. It takes twice as much work to stretch a 2°2
spring 100 cm as it does to stretch the same spring 50 cm. (b) (l_J §>
15. A1kg objectis moving at 10 m/s. If a force in the direction 2°2
of motion does 4® J of work on the object, then what is the a%b ab?
object’s final speed? © 6 6
(a) 134 m/s ) (E il)
(b) 55 mis 33
() 50 m/s 5. Consider the regioR in the first quadrant that is bounded by
) y = 4—x? with a constant density. If the centroid of the
(d) 11 mis region is located atx,y), then which of the following state-
ments is true?
Section 6.7 @ M=385
ection 6. 8
(b) y=2
1. Consider the lamina bounded by the curyes x2, x = a (©) x= %3
(with a > 0) in the first quadrant. I = x+ 1 then find an (d) My =45

expression for the mass of the lamina in terms.of ) o . .
6. Consider the region in the first quadrant that is bounded by

13 the circlex? +y2 = r2 with a density of5 = 1. Which of the

(@) za . :
3 following statements is true?
R (@) M =m?
3 4
2 (b) My=mmr/2
5 (d) The centroid of the region cannot be found.

a
(d) —(6+5a) . .
60 7. Consider the lamina bounded by the curxes y? — 4 and

2. For the lamina in problem #1 firfdy in terms ofa. y = X/3 with a constant densit§. Which of the following
expressions represents the mass of the region?

1
@ §a3 12
L, @ / 5 (VXT4—x/3) dx
a A -3
®y3+7 4
4 ® [ 6 (@y-y+ady
© 4 (1+(4/5)a) 4
: © [ 5y (Gy-y+4dy
d) 2 (6+5a) -1
( 60 (d) None of the above
3. For the lamina in problem #1 firldy in terms ofa. 8. For the region described in Problem 7, which of the the fol-
1 lowing expressions represents the moment abouk-ves,
(@) Za° M
3 X
3 4 4
0 5+5 @ [ & @y-y?+a)dy



12
(b) / 5-x- (VX T 4—x/3) dx

© /12 (x+4fx—2> dx

(d) None of the above

9. Answer true or false. For the region described in Problem 7,

thex-coordinate of the centroid of the region is negative.

10. Find the centroid of the region bounded by the cupes/x,

y=1,andx=4
(@) (2.94,1.35)
(b) (1.35,2.94)
(c) (2.25,4.9)
(d) (4.9,2.25)

The quadrilateraABCD region has corners at the points
A(1,5), B(8,4), C(6,0), D(2,2). Find the centroid of the re-
gion.

(a) (9/2,17/6)

(b) (9/2,5/2)

(c) (44/9,5/2)

(d) (17/4,11/4)

11.

12. A laminar region is bounded by the curves- 1, x = 10,

y=0, andy = 1/xwith & = x? 4 1. Find the center of gravity
of the region.

(a) (5.175810.14168

(b) (6.601990.09556

(c) (6.72727,0.0909]

(d) (3.908650.19543

o~~~ —

Section 6.8

1. Aflat rectangular plate is submerged horizontally in water to
a depth of €0 ft. If the top surface of the plate has an area of
50 ft2, and the liquid in which it is submerged is water, then
find the force on the top of the plate. Neglect the effect of the
atmgsphere above the liquid. (The density of water igl62
Ib/ft>.

(a) 300 Ib
(b) 3341b

(c) 2,080 Ib
(d) 187201b

2. Find the force (in N) on the top of a submerged object if its
surface is 1M m? and the pressure acting on it i23 10°
Pa. Neglect the effect of the atmosphere above the liquid.

(@) 37x10*N
(b) 32x10° N
(c) 64x10° N
(d) 17x10° N

3. Find the force on a 100 ft wide by 5 ft deep wall of a swim-

10.

ming pool filled with water. Neglect the effect of the atmo-
sphere above the liquid. (The density of water is4@B/ft3.)

(a) 78000 Ib
(b) 124800 Ib
(c) 62400 Ib
(d) 624 1b

. Answer true or false. The force a liquid of densityexerts

on an equilateral triangle with edglsn length submerged

hp ,

point down is given by x dx.

. Aright triangle is submerged vertically with one side at the

surface in a liquid of densitp. The triangle has a leg that is
20 m long located at the surface and a leg 10 m long straight
down. Find the force exerted on the triangular surface, in
terms of density. Neglect the effect of the atmosphere above
the liquid.

(a) 67PN

(b) 50 N

(c) 60 N

(d) 20 N

. Answer true or false. A glass circular window on the side of

a submarine has the same force acting on the top half as on
the bottom half.

. Find the force on a 304%thorizontal surface 20 ft deep in

water. Neglect the effect of the atmosphere above the liquid.
(The density of water is 62 Ib/ft3.)

(a) 600 Ib
(b) 37,440 Ib
(c) 1,200 b
(d) 30,000 Ib

. Answer true or false. A flat sheet of material is submerged

vertically in water. The force acting on each side must be the
same.

. Answer true or false. If a submerged horizontal object is el-

evated to half its original depth, the force exerted on the top
of the object will be half the force originally exerted on the
object. Assume there is a vacuum above the liquid surface.

Answer true or false. If a square, flat surface is suspended
vertically in water and its center is 20 m deep, the force on
the object will double if the object is relocated to a depth of
40 m. Neglect the effect of the atmosphere above the liquid.



11. Answer true or false. The force on a semicircular, vertical (@ sechix+ 5) tanh(x+5) + 3x?
1/2 2 v —]
wall with top d is given by/ 2px4/ % —x2 dx. sectx+5) —x
0

12. Answer true or false. The force exerted by water on a surface 6. /sinh(3x+ 6) dx=
of a square, vertical plate with edges of 3 mifit is suspended
with its top 2 m below the surface is 18 Ib. (The density of

water is 624 Ib/ft3.) (b) }cosh(3x+6) ic
13. Answer true or false. If a submerged rectangle is rotatéd 90 3
about an axis through its center and perpendicular to its sur- (c) —3cosh(3x+6)+C
face, the force exerted on one side of it will be the same 1
: - : ' d) —=cosh(3x+6)+C
provided the entire rectangle remains submerged. @ 3 h(3x+6) +

(a) 3cosh3x+6)+C

7. /cosﬁxsjnhx dx =

Section 6.9 @ %Cosﬁix L
1. Evaluate sinki7). (b) 8cosfix+C
(a) Not defined. (c) 7cosfix+C
(b) 5511614 (d) écosl?erC
(c) 5483161
(d) 5494283 8. /sinhgxcoshx dx =
2. Evaluate cosht (2).
va @ (a) 2L ginrox 4
(a) 13170 10
(b) 13165 (b) 10sinH%%+C
(©) 13152 (c) 9sinx+C
1.
(d) 13174 (d) §S|nl"f3x+C
(a) (5x+1)cosh(5x+1) 1
(b) 5cosh5x+1) @ V36+X2
(c) —(5x+1)cosh(5x+1) ) 1
(d) —5cosh5x+1) 6v/36+x2
1
4. Finddy/dx if y = sinh(3x?). O —
y/dxif y (3x9) © N
(@) 6xcosh(3x?) . 1
(b) —6xcosh(3x?) @ 6v/36— 2
(c) 6cosh(6x) 10. Answer true or false. If = —coth*(x+3) when|x| > 0,
(d) —6cosh6x) - 1
. - thendy/dx 21618
5. Finddy/dx if y= 2,/sech{x+5) —x3. dx
@ —sech{x+ 5) tanh(x+5) — 3x? 1. /\/1+ 62
V/sechix+5) —x3
x+-5) (@) }sinh’1(4x)+C
(x4 5) cosh(x+5) — 3x? 4
(b) . - 1
sinh(x+5) — X (b) Zcoth*1(4x) +C
—cosh(x+5) + 3%

© sinh(x+5) —x3 (c) % cosh™t(4x)+C



(d) %tanh*1 (4x) +C

12. Answer true or false/ 112(2)( = 4sinh (&) +C
edx
13. Answer true or false/ ———— =sinh 1 (e*)+C
V14X &

14. Answer true or falsex.ﬁlgcmcoshx)2 =0.

15. Answer true or falsex. lim(cothx)? = 1.
— —00

Chapter 6 Test

1. Find the area of the region enclosedyby: x2 andy = x by

integrating with respect t.
(@) 1/6
(b) 1
(c) 1/4
(d) 1/16

2. Find the area of the region enclosed by

y = cos(X— 11/2), y = —X, X = 0 andx = 11/2. The approxi-
mate area is

(@) 11169

(b) 22337

(c) 44674

d 1

. Find the volume of the solid that results when the region en-

closed by the curveg= /—sin(—x), y=0 andx = ri/4 is
revolved about the-axis. The approximate volume is

(a) 0143
(b) 0.920
(c) 1408
(d) 2816

. Find the volume of the solid that results when the region en-
closed by the curves= —¢&¥, x= —1 andy = 1 is revolved
about they-axis. The approximate volume is

(a) 6894
(b) 3.195
(c) 10205
(d) 32060

. Answer true or false. Cylindrical shells can be used to find
the volume of the solid when the region enclosed/by /X,

x= —3,x=0 andy = 0 is revolved about thg-axis and the
volume of the solid is 563.

10.

11.

12.

13.

14.

. Answer true or false.

. Answer true or false. Cylindrical shells can be used to find

the volume of the solid when the region enclosedkby y2,
x=0andy = —2 is revolved about the-axis and the volume
of the solid is 4t.

. Answer true or false. The arc length pf cos(—x) from

x=0tox=rm/2is 1.

. Answer true or false. The arc length of the parametric curve

x=sint andy = —cost, 0<t < 11/2 is 17/2.

The surface area of the curve
y=sin(x+m), —m<y<0 revolved about thec-axis is

T
given by/ 2711xy/ 1+ sir? (x+ 1) dx.
0
Use a CAS to find the surface area of the solid that results

when the curvey = —€X, 0 < x < 0.5 is revolved about the
x-axis. The approximate surface area is

(a) 1854

(b) 9.27

(c) 148

(d) 6.78
Assume a spring whose natural length .3 & is stretched
0.8 m by a 150 N force. How much work is done in stretch-
ing the spring?

(a) 60J

(b) 6,120J

(c) 6,000J

(d) 2403

Find the work done when a constant foFqe) = 15 N in the
positivex-direction moves an object fromn=4 m to 10 m.

(@) 45J
(b) 90J
(c) 180 J
(d) 150J

Find the work done when a variable forceFofx) = xi? N
in the positivex-direction moves an object from= 1 m to
X=3m.

(@ 0J

(b) 267J

(c) 06J

(d) 1793
Answer true or false. A semicircular wall 20 ft across at the
top forms one end of a tank. The total force exerted on this
wall by a liquid that fills the tank is 2800 Ib. Ignore the

force of air above the liquid. (The density of the liquid is
12438 Ib/ft3.)



15. A horizontal table top is submerged in 10 ft of water. If the
dimensions of the table are 6 ft by 1 ft, find the force on the
top of the table that exceeds the force that would be exerted
by the atmosphere if the table were at the surface of the water.
(The density of water is 62 Ib/ft3.)

(@ 37441b
(b) 1,8721b
(c) 4,000 Ib
(d) 60 1Ib
16. Finddy/dx if y = tanh(x®).
(@) 5¢*secht(x°)
(b) —5x*sectt(x°)
(c) 5¢*tanh(x®)
(d) secK(5x*)

17. /tanl‘?xsechzx dx =

(@) 4tanfix+C
(b) 5tanfx+C

18

19

20.

21.

(c) 6tanffx+C
(d) %taonJrC

4dx
VeX—1

. Answer true or faIsex.ﬂlgor(\cothx)2 =1.

. Answer true or false = 4cosht (&)

Evaluate cosfl).
(a) 1543
(b) 1551
(c) 1562
(d) 1580
Find the centroid of the region bounded between the curves
y=|x] andx+2y = 3.
(@) (—4/3,2/3)
(b) (—2/3,4/3)
() (—3/2,4/3)
(d) (—3/2,2)

—_~ o~ o~



Chapter 6: Answers to Sample Tests

Section 6.1

1.a
9.d

Section 6.2

1.a
9.c

Section 6.3

1.d
9.d

Section 6.4

1.a
9.a

Section 6.5

1.b
9. false

Section 6.6

1.a
9.c

Section 6.7

1.b
9. false

Section 6.8

1.d
9. true

Section 6.9

1.c
9.a

Chapter 6 Test

1.a
9. false
17.d

2. false
10. false

2.d
10. false

2.b
10. b

2.a
10. false

2.C
10. false

2.d
10. a

2.b
10. true

2.a
10. false

2.b
10. d
18. false

3.a
11. false

3.b
11.c

3.b
11.c

3. false
11.d

3.c
11. false

3.d
11. a

3.a
11. false

3.b
11. a

3.b
11. a
19. true

4. c
12. false

4. c
12. false

12. a

4, false
12. b

4, false
12. true

4. false
12. false

4.d
12.b

4. false
12. false

4. a
12. false

5.b
13. true

5. true
13. b

5.¢c
13. b

5.b
13.¢c

5. false
13. true

5.a
13. false

5.b

5. a
13. true

5.a
13. false

5. false
13. b
21.b

6.b
14.b

6. false
14. b

6. a
14. false

6.cC
14. false

6. false
14.d

6. false
14. false

6. false

6.b
14. false

6. false
14. false

7.d
15. false

7.d

7.b

7.b

7.a
15. false

7. false
15. a

8.a

8.b

8. false

8.d

8.d

8.d

8. true

8. true
16. a



