Mathe 2

Description

Bachelor Mathe Quiz on Mathe 2, created by India Rose on 23/06/2017.
India Rose
Quiz by India Rose, updated more than 1 year ago
India Rose
Created by India Rose over 7 years ago
8
0

Resource summary

Question 1

Question
Wie wird die partielle Integration richtig durchgeführt?
Answer
  • ∫ ( f(x) * g'(x) ) dx = f(x) * g(x) - ∫ ( f'(x) * g(x) ) dx
  • ∫ ( f(x) * g'(x) ) dx = f(x) * g(x) + ∫ ( f'(x) * g(x) ) dx
  • ∫ ( f(x) * g'(x) ) dx = f(x) * g(x) - ∫ ( f(x) * g(x) ) dx
  • ∫ ( f(x) * g(x) ) dx = f(x) * g(x) - ∫ ( f'(x) * g(x) ) dx

Question 2

Question
Wie lautet die Formel zur Berechnung von ak?
Answer
  • ak = (π / 2) (-π)∫(π) ( f(x) * cos(k*x ) ) dx
  • ak = (1 / π) (-e)∫(π) ( f(x) * cos(k*x ) ) dx
  • ak = (1 / π) (-π)∫(π) ( f(x) * cos(k*x ) ) dx
  • ak = (1 / π) (-π)∫(π) ( f(x) * sin(k*x ) ) dx

Question 3

Question
Wie lautet die Formel zur Berechnung von bk?
Answer
  • bk = (1 / π) (-π)∫(π) ( f(x) * sin(e*x ) ) dx
  • bk = (1 / π) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
  • bk = (π / 2) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
  • bk = (1 / π) (-π)∫(π) ( -f(x) * -sin(k*x ) ) dx

Question 4

Question
Die Formel von a0 lautet wie folgt: ak = (1 / π[blank_start])[blank_end]
Answer
  • ) (-π)∫(π) ( f(x) * cos(k*x) ) dx
  • ) (-π)∫(-π) ( -f(x) ) dx
  • ) (-π)∫(π) ( -f(x) ) dx
  • ) (-π)∫(π) ( f(x) ) dx

Question 5

Question
Wie lautet die Formel für die Fourieranalyse?
Answer
  • f(x) = (a0 / 2) + (∞)∑ (k=1) ( (ak * cos(k*x) + bk *sin(k*x) )
  • f(x) = (a0 / 2) + (∞)∑ (k=1) ( (bk * cos(k*x) + ak *sin(k*x) )
  • f(x) = (a0 / 2) + (∞)∑ (k=1) ( (ak * sin(k*x) + bk *sin(k*x) )
  • f(x) = (a0 / 2) - (∞)∑ (k=1) ( (ak * cos(k*x) - bk *sin(k*x) )

Question 6

Question
Wie lautet die summierte Rechtecksformel?
Answer
  • ∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( b - a ) / n ) * f(xn-1)
  • ∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( a - b ) / n ) * f(xn-1)
  • ∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( b - a ) / n ) * f(xn)
  • ∫ ( f(x) ) dx = (( b - a ) / b ) * f(x0) + ... + (( b - a ) / n ) * f(xn-1)

Question 7

Question
Wie lautet die Trapezformel?
Answer
  • ∫ ( f(x) ) dx = ( b - a ) * (( f(a) + f(b) ) / 2 )
  • ∫ ( f(x) ) dx = ( a - b ) * (( f(a) + f(b) ) / 2 )
  • ∫ ( f(x) ) dx = ( b - a ) * (( f(a) + f(b) ) / 4 )
  • ∫ ( f(x) ) dx = ( b - a ) * (( f(n) + f(a) ) / 2 )

Question 8

Question
Wie lautet die Simpsonregel ? (Summierte Kepplersche Fassregel?)
Answer
  • ∫ ( f(x) ) dx = (( b - a ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
  • ∫ ( f(x) ) dx = (( a - b ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
  • ∫ ( f(x) ) dx = (( b - a ) / (2*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
  • ∫ ( f(x) ) dx = (( b - a ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(xn-2) + 4 * f(xn-1) + f(xn) )

Question 9

Question
Wie berechnet sich die Bogenlänge von Kurven?
Answer
  • L = √( ( f(b) + f(a) )² + ( g(b) + g(a) )² )
  • L = √( ( f(b) - f(a) )² - ( g(b) - g(a) )² )
  • L = √( ( f(b) - f(b) )² + ( g(a) - g(a) )² )
  • L = √( ( f(b) - f(a) )² + ( g(b) - g(a) )² )

Question 10

Question
Wie berechnet man den nächsten Schritt im De Casteljau Algorithmus?
Answer
  • ( 1 - t ) * P0 + t * P1
  • ( 1 - t ) * P1 - t * P0
  • t * P0 + (1 - t ) * P1
  • t * P0 + t * P1

Question 11

Question
Wie funktioniert das Newton-Verfahren?
Answer
  • g(x) = x * (f(x)/f'(x))
  • g(x) = x / (f(x)/f'(x))
  • g(x) = x + (f(x)/f'(x))
  • g(x) = x * (F(x)/f'(x))
Show full summary Hide full summary

Similar

Abitur 2016 Berlin / Brandenburg - Themen & Übersicht
Laura Overhoff
Übersicht - Analytische Geometrie
Laura Overhoff
Analytische Geometrie
Laura Overhoff
Abitur 2016 Hessen - Themen & Übersicht
Laura Overhoff
Stochastik
Laura Overhoff
Untersuchung von ganzrationalen Funktionen
Laura Overhoff
Mathe Themen
Junsoo Kim
Was the Weimar Republic doomed from the start?
Louisa Wania
GCSE Music revision 1
georgie.proctor
The Periodic Table
Catherine Kidd
CMS Interpretive Guidelines for Complaint/Grievances
Lydia Elliott, Ed.D