null
US
Sign In
Sign Up for Free
Sign Up
We have detected that Javascript is not enabled in your browser. The dynamic nature of our site means that Javascript must be enabled to function properly. Please read our
terms and conditions
for more information.
Next up
Copy and Edit
You need to log in to complete this action!
Register for Free
9396867
Mathe 2
Description
Bachelor Mathe Quiz on Mathe 2, created by India Rose on 23/06/2017.
No tags specified
mathe
mathe
bachelor
Quiz by
India Rose
, updated more than 1 year ago
More
Less
Created by
India Rose
over 7 years ago
8
0
0
Resource summary
Question 1
Question
Wie wird die partielle Integration richtig durchgeführt?
Answer
∫ ( f(x) * g'(x) ) dx = f(x) * g(x) - ∫ ( f'(x) * g(x) ) dx
∫ ( f(x) * g'(x) ) dx = f(x) * g(x) + ∫ ( f'(x) * g(x) ) dx
∫ ( f(x) * g'(x) ) dx = f(x) * g(x) - ∫ ( f(x) * g(x) ) dx
∫ ( f(x) * g(x) ) dx = f(x) * g(x) - ∫ ( f'(x) * g(x) ) dx
Question 2
Question
Wie lautet die Formel zur Berechnung von ak?
Answer
ak = (π / 2) (-π)∫(π) ( f(x) * cos(k*x ) ) dx
ak = (1 / π) (-e)∫(π) ( f(x) * cos(k*x ) ) dx
ak = (1 / π) (-π)∫(π) ( f(x) * cos(k*x ) ) dx
ak = (1 / π) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
Question 3
Question
Wie lautet die Formel zur Berechnung von bk?
Answer
bk = (1 / π) (-π)∫(π) ( f(x) * sin(e*x ) ) dx
bk = (1 / π) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
bk = (π / 2) (-π)∫(π) ( f(x) * sin(k*x ) ) dx
bk = (1 / π) (-π)∫(π) ( -f(x) * -sin(k*x ) ) dx
Question 4
Question
Die Formel von a0 lautet wie folgt: ak = (1 / π[blank_start])[blank_end]
Answer
) (-π)∫(π) ( f(x) * cos(k*x) ) dx
) (-π)∫(-π) ( -f(x) ) dx
) (-π)∫(π) ( -f(x) ) dx
) (-π)∫(π) ( f(x) ) dx
Question 5
Question
Wie lautet die Formel für die Fourieranalyse?
Answer
f(x) = (a0 / 2) + (∞)∑ (k=1) ( (ak * cos(k*x) + bk *sin(k*x) )
f(x) = (a0 / 2) + (∞)∑ (k=1) ( (bk * cos(k*x) + ak *sin(k*x) )
f(x) = (a0 / 2) + (∞)∑ (k=1) ( (ak * sin(k*x) + bk *sin(k*x) )
f(x) = (a0 / 2) - (∞)∑ (k=1) ( (ak * cos(k*x) - bk *sin(k*x) )
Question 6
Question
Wie lautet die summierte Rechtecksformel?
Answer
∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( b - a ) / n ) * f(xn-1)
∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( a - b ) / n ) * f(xn-1)
∫ ( f(x) ) dx = (( b - a ) / n ) * f(x0) + ... + (( b - a ) / n ) * f(xn)
∫ ( f(x) ) dx = (( b - a ) / b ) * f(x0) + ... + (( b - a ) / n ) * f(xn-1)
Question 7
Question
Wie lautet die Trapezformel?
Answer
∫ ( f(x) ) dx = ( b - a ) * (( f(a) + f(b) ) / 2 )
∫ ( f(x) ) dx = ( a - b ) * (( f(a) + f(b) ) / 2 )
∫ ( f(x) ) dx = ( b - a ) * (( f(a) + f(b) ) / 4 )
∫ ( f(x) ) dx = ( b - a ) * (( f(n) + f(a) ) / 2 )
Question 8
Question
Wie lautet die Simpsonregel ? (Summierte Kepplersche Fassregel?)
Answer
∫ ( f(x) ) dx = (( b - a ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
∫ ( f(x) ) dx = (( a - b ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
∫ ( f(x) ) dx = (( b - a ) / (2*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(x2n-2) + 4 * f(x2n-1) + f(x2n) )
∫ ( f(x) ) dx = (( b - a ) / (6*n)) * ( f(x0) + 4 * f(x1) + 2 * f(x2) + 4 * f(x3) + ... + 2 * f(xn-2) + 4 * f(xn-1) + f(xn) )
Question 9
Question
Wie berechnet sich die Bogenlänge von Kurven?
Answer
L = √( ( f(b) + f(a) )² + ( g(b) + g(a) )² )
L = √( ( f(b) - f(a) )² - ( g(b) - g(a) )² )
L = √( ( f(b) - f(b) )² + ( g(a) - g(a) )² )
L = √( ( f(b) - f(a) )² + ( g(b) - g(a) )² )
Question 10
Question
Wie berechnet man den nächsten Schritt im De Casteljau Algorithmus?
Answer
( 1 - t ) * P0 + t * P1
( 1 - t ) * P1 - t * P0
t * P0 + (1 - t ) * P1
t * P0 + t * P1
Question 11
Question
Wie funktioniert das Newton-Verfahren?
Answer
g(x) = x * (f(x)/f'(x))
g(x) = x / (f(x)/f'(x))
g(x) = x + (f(x)/f'(x))
g(x) = x * (F(x)/f'(x))
Show full summary
Hide full summary
Want to create your own
Quizzes
for
free
with GoConqr?
Learn more
.
Similar
Abitur 2016 Berlin / Brandenburg - Themen & Übersicht
Laura Overhoff
Übersicht - Analytische Geometrie
Laura Overhoff
Analytische Geometrie
Laura Overhoff
Abitur 2016 Hessen - Themen & Übersicht
Laura Overhoff
Stochastik
Laura Overhoff
Untersuchung von ganzrationalen Funktionen
Laura Overhoff
Mathe Themen
Junsoo Kim
Was the Weimar Republic doomed from the start?
Louisa Wania
GCSE Music revision 1
georgie.proctor
The Periodic Table
Catherine Kidd
CMS Interpretive Guidelines for Complaint/Grievances
Lydia Elliott, Ed.D
Browse Library