Potęgi,pierwiastki i logarytmy

Description

Matematyka, 2 liceum
Monika Bączek
Flashcards by Monika Bączek, updated more than 1 year ago
Monika Bączek
Created by Monika Bączek over 7 years ago
101
0

Resource summary

Question Answer
\(a^{0}=\) 1
\(a^{n}*a^{m}=\) \(a^{m+n}\)
\(a^{n}:a^{m}=\) \(a^{m-n}\)
\((a^{n})^{m}=\) \(a^{m*n}\)
\(a^{\frac {1}{n}}=\) \(\sqrt[n]a\)
\(a^{\frac {k}{n}}=\) \(\sqrt[n]a^{k}\)
\(log_{a}b=x \leftrightarrow \) \(a^{x}=b\)
\(log_{a}b-log_{a}c=\) \(log_{a}(\frac {b}{c})\)
\(log_{a}b^{c}=\) \(c*log_{a}b\)
\(log_{a}b+log_{a}c=\) \(log_{a}(b*c)\)
\((2^{-8})^{3}=\) \(2^{-24}\)
\(17^{6}:17^{-3}=\) \(17^{9}\)
\(15^{-3}*15^{-7}=\) \(15^{-10}\)
\(6^{-5}:6^{-2}=\) \(6^{-3}\)
\(2^{82}:4^{40}=\) \(2^{2}\)
\(25^{3}*0,2^{-6}=\) \(5^{12}\)
\(5^{8}:0,2^{-7}=\) \(5\)
\(\frac {125^{3}*(5^{-2})^{4}}{25^{4}*25*^{-5}}=\) \(125\)
\(\frac {7^{5}:49}{7}*(\frac {1}{7})^{-2}=\) \(7^{4}\)
\(8^{\frac {1}{3}}=\) 2
\(144^{-\frac {1}{2}}=\) \(\frac {1}{12}\)
\(64^{\frac {4}{3}}=\) 256
\(9^{-1,5}=\) \(\frac {1}{27}\)
\(log_{2}32=\) 5
\(log_{7}1=\) 0
\(log10^{5}=\) 10
\(log_{2}80+log_{2}0,1=\) 3
\(log_{3}4,5+log_{3}2=\) 2
\(log_{2}7-log_{2}56=\) -3
\(log_{8}8^{\frac{1}{3}}=\) \(\frac{1}{3}\)
Show full summary Hide full summary

Similar

The SAT Math test essentials list
lizcortland
How to improve your SAT math score
Brad Hegarty
GCSE Maths: Pythagoras theorem
Landon Valencia
Edexcel GCSE Maths Specification - Algebra
Charlie Turner
Mathematics
Corey Lance
Graph Theory
Will Rickard
Projectiles
Alex Burden
MODE, MEDIAN, MEAN, AND RANGE
Elliot O'Leary
FREQUENCY TABLES: MODE, MEDIAN AND MEAN
Elliot O'Leary
HISTOGRAMS
Elliot O'Leary
CUMULATIVE FREQUENCY DIAGRAMS
Elliot O'Leary