Created by Freddy Ulate Agüero
almost 10 years ago
|
||
Question | Answer |
Doble Complemento (DC) | \[ \overline{A} = A \] |
De Morgan (DM) | \[ \overline{A \cup B} = \overline{A} \cap \overline{B} \\ \overline{A \cap B} = \overline{A} \cup \overline{B} \] |
Conmutatividad (Con.) | \[ A \cup B = B \cup A \\ A \cap B = B \cap A \] |
Asociativa (Aso.) | \[ (A \cup B) \cup C = A \cup (B \cup C) \\ (A \cap B) \cap C = A \cap (B \cap C) \] |
Distributiva (Dis.) | \[ A \cup (B \cap C) = (A \cup B) \cap (A \cup B) \\ A \cap (B \cup C) = (A \cap B) \cup (A \cap B) \] |
Idempotencia (Ide.) | \[ A \cup A = A \\ A \cap A = A \] |
Neutro (Ne.) | \[ A \cup \varnothing = A \\ A \cap U = A \] |
Inversos (Inv.) | \[ A \cup \overline{A} = U \\ A \cap \overline{A} = \varnothing \] |
Dominación (Dom.) | \[ A \cap \varnothing = \varnothing \\ A \cup U = U \] |
Absorción (Abs.) | \[ A \cup (A \cap B) = A \\ A \cap (A \cup B) = A \] |
Want to create your own Flashcards for free with GoConqr? Learn more.