Question | Answer |
\(\frac{2}{3}\) => | \ ( \ frac {2} {3} \ ) |
3\(\frac{1}{2}\) => | 3 \ ( \ frac {1} {2} \ ) |
\(\frac{2}{3} + \frac{3}{5}\ – \frac{3}{4}\) = = \(\frac{2·5·4+3·3·4–3·3·5}{3·5·4}\) = = \(\frac{40+36–45}{60}\) = \(\frac{31}{60}\) | \ ( \ frac {2} {3} + \ frac {3} {5} \ – \ frac {3} {4} \ ) = = \ ( \ frac {2·5·4+3·3·4–3·3·5} {3·5·4} \ ) = = \ ( \ frac {40+36–45} {60} \ ) = \ ( \ frac {31} {60} \ ) |
\(\frac{2}{3}\)x\(\frac{3}{5}\) => | \ ( \ frac {2} {3} \ ) x \ ( \ frac {3} {5} \ ) |
\(\frac{2}{3}\):\(\frac{3}{5}\) => | \ ( \ frac {2} {3} \ ) : \ ( \ frac {3} {5} \ ) |
\(2^3\) => | \ ( 2 ^ 3 \ ) |
2,07 x \(10^6\) = | 2,07 x \ (10^6 \ ) |
6,7 x \(10^{-6}\) = | 6,7 x \ (10^ {-6} \ ) |
\(\sqrt {16}\) = | \ ( \ sqrt {16} \ ) |
\(\sqrt {200}\) \(\approx\) 14 | \ ( \ sqrt {200} \ ) \ ( \ approx \ ) 14 |
\(\sqrt[i]{R}\) = r, rd | \ ( \ sqrt [i] {R} \ ) = r, rd índice Radicando raíz, residuo |
2,3454545... => 2,3\(\stackrel{\frown}{45}\) | 2,3 \ ( \ stackrel { \ frown} {45} \ ) Decimal periódico. |
\(\mathbf{texto·en·negritas}\) | \ ( \ mathbf {texto·en·negritas} \ ) Negrita. |
Arco: 2,3\(\overparen{45}\) | 2,3 \ ( \ overparen {45} \ ) |
Arco, periódico: 2,3\(\stackrel\frown{45}\) | 2,3 \ ( \ stackrel \ frown {45} \ ) |
Segmento: 2,3\(\overline{457}\) | 2,3 \ ( \ overline {457} \ ) |
Circunflejo largo: 2,3\(\widehat{457}\) | 2,3 \ ( \ widehat {457} \ ) |
Doble flecha: \(\overleftrightarrow{AB}\) | \ ( \ overleftrightarrow {AB} \ ) |
\(\overline{X I V} DC LXX IX\) = 14.679 | \ ( \ overline {X I V} DC LXX IX \ ) |
Área Círculo : \(\pi\) × \(r^2\) => π ·r² | \ ( \ pi \ ) × \ ( r ^ 2 \ ) |
Potencias, Límites y otras fórmulas lal2 [1^2] \(\lim_{x to infty} exp(-x) = 0\) \(\a bmod b\) [x equiv a ] [pmod b] \(\pi\) [k_{n+1} = n^2 + k_n^2 – k_{n-1}] Paréntesis [( a )] [ [ b ]] [ { c }] [ | d |] [ | e |] [langle f rangle] [lfloor g rfloor] [lceil h rceil] [ ulcorner i urcorner] | ? |
\(\pi\) \(\alpha\) | \ ( \ pi \ ) \ ( \ Alpha \ ) |
Want to create your own Flashcards for free with GoConqr? Learn more.