\(a^{0}=\)
\(a^{n}*a^{m}=\)
\(a^{n}:a^{m}=\)
\((a^{n})^{m}=\)
\(a^{\frac {1}{n}}=\)
\(a^{\frac {k}{n}}=\)
\(log_{a}b=x \leftrightarrow \)
\(log_{a}b-log_{a}c=\)
\(log_{a}b^{c}=\)
\(log_{a}b+log_{a}c=\)
\((2^{-8})^{3}=\)
\(17^{6}:17^{-3}=\)
\(15^{-3}*15^{-7}=\)
\(6^{-5}:6^{-2}=\)
\(2^{82}:4^{40}=\)
\(25^{3}*0,2^{-6}=\)
\(5^{8}:0,2^{-7}=\)
\(\frac {125^{3}*(5^{-2})^{4}}{25^{4}*25*^{-5}}=\)
\(\frac {7^{5}:49}{7}*(\frac {1}{7})^{-2}=\)
\(8^{\frac {1}{3}}=\)
\(144^{-\frac {1}{2}}=\)
\(64^{\frac {4}{3}}=\)
\(9^{-1,5}=\)
\(log_{2}32=\)
\(log_{7}1=\)
\(log10^{5}=\)
\(log_{2}80+log_{2}0,1=\)
\(log_{3}4,5+log_{3}2=\)
\(log_{2}7-log_{2}56=\)
\(log_{8}8^{\frac{1}{3}}=\)